Abstract:This study presents an integrated deep learning model for automatic detection and classification of Gastrointestinal bleeding in the frames extracted from Wireless Capsule Endoscopy (WCE) videos. The dataset has been released as part of Auto-WCBleedGen Challenge Version V2 hosted by the MISAHUB team. Our model attained the highest performance among 75 teams that took part in this competition. It aims to efficiently utilizes CNN based model i.e. DenseNet and UNet to detect and segment bleeding and non-bleeding areas in the real-world complex dataset. The model achieves an impressive overall accuracy of 80% which would surely help a skilled doctor to carry out further diagnostics.
Abstract:Gastrointestinal (GI) diseases represent a significant global health concern, with Capsule Endoscopy (CE) offering a non-invasive method for diagnosis by capturing a large number of GI tract images. However, the sheer volume of video frames necessitates automated analysis to reduce the workload on doctors and increase the diagnostic accuracy. In this paper, we present CapsuleNet, a deep learning model developed for the Capsule Vision 2024 Challenge, aimed at classifying 10 distinct GI abnormalities. Using a highly imbalanced dataset, we implemented various data augmentation strategies, reducing the data imbalance to a manageable level. Our model leverages a pretrained EfficientNet-b7 backbone, tuned with additional layers for classification and optimized with PReLU activation functions. The model demonstrated superior performance on validation data, achieving a micro accuracy of 84.5% and outperforming the VGG16 baseline across most classes. Despite these advances, challenges remain in classifying certain abnormalities, such as Erythema. Our findings suggest that CNN-based models like CapsuleNet can provide an efficient solution for GI tract disease classification, particularly when inference time is a critical factor.
Abstract:Automated person re-identification in a multi-camera surveillance setup is very important for effective tracking and monitoring crowd movement. In the recent years, few deep learning based re-identification approaches have been developed which are quite accurate but time-intensive, and hence not very suitable for practical purposes. In this paper, we propose an efficient hierarchical re-identification approach in which color histogram based comparison is first employed to find the closest matches in the gallery set, and next deep feature based comparison is carried out using Siamese network. Reduction in search space after the first level of matching helps in achieving a fast response time as well as improving the accuracy of prediction by the Siamese network by eliminating vastly dissimilar elements. A silhouette part-based feature extraction scheme is adopted in each level of hierarchy to preserve the relative locations of the different body structures and make the appearance descriptors more discriminating in nature. The proposed approach has been evaluated on five public data sets and also a new data set captured by our team in our laboratory. Results reveal that it outperforms most state-of-the-art approaches in terms of overall accuracy.