Abstract:We present an unsupervised method for aggregating anomalies in tabular datasets by identifying the top-k tabular data quality insights. Each insight consists of a set of anomalous attributes and the corresponding subsets of records that serve as evidence to the user. The process of identifying these insight blocks is challenging due to (i) the absence of labeled anomalies, (ii) the exponential size of the subset search space, and (iii) the complex dependencies among attributes, which obscure the true sources of anomalies. Simple frequency-based methods fail to capture these dependencies, leading to inaccurate results. To address this, we introduce Tab-Shapley, a cooperative game theory based framework that uses Shapley values to quantify the contribution of each attribute to the data's anomalous nature. While calculating Shapley values typically requires exponential time, we show that our game admits a closed-form solution, making the computation efficient. We validate the effectiveness of our approach through empirical analysis on real-world tabular datasets with ground-truth anomaly labels.
Abstract:Generative AI and LLMs in particular are heavily used nowadays for various document processing tasks such as question answering and summarization. However, different LLMs come with different capabilities for different tasks as well as with different costs, tokenization, and latency. In fact, enterprises are already incurring huge costs of operating or using LLMs for their respective use cases. In this work, we propose optimizing the usage costs of LLMs by estimating their output quality (without actually invoking the LLMs), and then solving an optimization routine for the LLM selection to either keep costs under a budget, or minimize the costs, in a quality and latency aware manner. We propose a model to predict the output quality of LLMs on document processing tasks like summarization, followed by an LP rounding algorithm to optimize the selection of LLMs. We study optimization problems trading off the quality and costs, both theoretically and empirically. We further propose a sentence simplification model for reducing the number of tokens in a controlled manner. Additionally, we propose several deterministic heuristics for reducing tokens in a quality aware manner, and study the related optimization problem of applying the heuristics optimizing the quality and cost trade-off. We perform extensive empirical validation of our methods on not only enterprise datasets but also on open-source datasets, annotated by us, and show that we perform much better compared to closest baselines. Our methods reduce costs by 40%- 90% while improving quality by 4%-7%. We will release the annotated open source datasets to the community for further research and exploration.