Abstract:Recently, Machine Learning (ML) methods are built-in as an important component in many smart agriculture platforms. In this paper, we explore the new combination of advanced ML methods for creating a smart agriculture platform where farmers could reach out for assistance from the public, or a closed circle of experts. Specifically, we focus on an easy way to assist the farmers in understanding plant diseases where the farmers can get help to solve the issues from the members of the community. The proposed system utilizes deep learning techniques for identifying the disease of the plant from the affected image, which acts as an initial identifier. Further, Natural Language Processing techniques are employed for ranking the solutions posted by the user community. In this paper, a message channel is built on top of Twitter, a popular social media platform to establish proper communication among farmers. Since the effect of the solutions can differ based on various other parameters, we extend the use of the concept drift approach and come up with a good solution and propose it to the farmer. We tested the proposed framework on the benchmark dataset, and it produces accurate and reliable results.
Abstract:We present CrossLoc3D, a novel 3D place recognition method that solves a large-scale point matching problem in a cross-source setting. Cross-source point cloud data corresponds to point sets captured by depth sensors with different accuracies or from different distances and perspectives. We address the challenges in terms of developing 3D place recognition methods that account for the representation gap between points captured by different sources. Our method handles cross-source data by utilizing multi-grained features and selecting convolution kernel sizes that correspond to most prominent features. Inspired by the diffusion models, our method uses a novel iterative refinement process that gradually shifts the embedding spaces from different sources to a single canonical space for better metric learning. In addition, we present CS-Campus3D, the first 3D aerial-ground cross-source dataset consisting of point cloud data from both aerial and ground LiDAR scans. The point clouds in CS-Campus3D have representation gaps and other features like different views, point densities, and noise patterns. We show that our CrossLoc3D algorithm can achieve an improvement of 4.74% - 15.37% in terms of the top 1 average recall on our CS-Campus3D benchmark and achieves performance comparable to state-of-the-art 3D place recognition method on the Oxford RobotCar. We will release the code and CS-Campus3D benchmark.