Abstract:Both computational and experimental material discovery bring forth the challenge of exploring multidimensional and often non-differentiable parameter spaces, such as phase diagrams of Hamiltonians with multiple interactions, composition spaces of combinatorial libraries, processing spaces, and molecular embedding spaces. Often these systems are expensive or time-consuming to evaluate a single instance, and hence classical approaches based on exhaustive grid or random search are too data intensive. This resulted in strong interest towards active learning methods such as Bayesian optimization (BO) where the adaptive exploration occurs based on human learning (discovery) objective. However, classical BO is based on a predefined optimization target, and policies balancing exploration and exploitation are purely data driven. In practical settings, the domain expert can pose prior knowledge on the system in form of partially known physics laws and often varies exploration policies during the experiment. Here, we explore interactive workflows building on multi-fidelity BO (MFBO), starting with classical (data-driven) MFBO, then structured (physics-driven) sMFBO, and extending it to allow human in the loop interactive iMFBO workflows for adaptive and domain expert aligned exploration. These approaches are demonstrated over highly non-smooth multi-fidelity simulation data generated from an Ising model, considering spin-spin interaction as parameter space, lattice sizes as fidelity spaces, and the objective as maximizing heat capacity. Detailed analysis and comparison show the impact of physics knowledge injection and on-the-fly human decisions for improved exploration, current challenges, and potential opportunities for algorithm development with combining data, physics and real time human decisions.
Abstract:Machine learning methods are progressively gaining acceptance in the electron microscopy community for de-noising, semantic segmentation, and dimensionality reduction of data post-acquisition. The introduction of the APIs by major instrument manufacturers now allows the deployment of ML workflows in microscopes, not only for data analytics but also for real-time decision-making and feedback for microscope operation. However, the number of use cases for real-time ML remains remarkably small. Here, we discuss some considerations in designing ML-based active experiments and pose that the likely strategy for the next several years will be human-in-the-loop automated experiments (hAE). In this paradigm, the ML learning agent directly controls beam position and image and spectroscopy acquisition functions, and human operator monitors experiment progression in real- and feature space of the system and tunes the policies of the ML agent to steer the experiment towards specific objectives.
Abstract:Optimization of experimental materials synthesis and characterization through active learning methods has been growing over the last decade, with examples ranging from measurements of diffraction on combinatorial alloys at synchrotrons, to searches through chemical space with automated synthesis robots for perovskites. In virtually all cases, the target property of interest for optimization is defined apriori with limited human feedback during operation. In contrast, here we present the development of a new type of human in the loop experimental workflow, via a Bayesian optimized active recommender system (BOARS), to shape targets on the fly, employing human feedback. We showcase examples of this framework applied to pre-acquired piezoresponse force spectroscopy of a ferroelectric thin film, and then implement this in real time on an atomic force microscope, where the optimization proceeds to find symmetric piezoresponse amplitude hysteresis loops. It is found that such features appear more affected by subsurface defects than the local domain structure. This work shows the utility of human-augmented machine learning approaches for curiosity-driven exploration of systems across experimental domains. The analysis reported here is summarized in Colab Notebook for the purpose of tutorial and application to other data: https://github.com/arpanbiswas52/varTBO
Abstract:Electron and scanning probe microscopy produce vast amounts of data in the form of images or hyperspectral data, such as EELS or 4D STEM, that contain information on a wide range of structural, physical, and chemical properties of materials. To extract valuable insights from these data, it is crucial to identify physically separate regions in the data, such as phases, ferroic variants, and boundaries between them. In order to derive an easily interpretable feature analysis, combining with well-defined boundaries in a principled and unsupervised manner, here we present a physics augmented machine learning method which combines the capability of Variational Autoencoders to disentangle factors of variability within the data and the physics driven loss function that seeks to minimize the total length of the discontinuities in images corresponding to latent representations. Our method is applied to various materials, including NiO-LSMO, BiFeO3, and graphene. The results demonstrate the effectiveness of our approach in extracting meaningful information from large volumes of imaging data. The fully notebook containing implementation of the code and analysis workflow is available at https://github.com/arpanbiswas52/PaperNotebooks
Abstract:Unsupervised and semi-supervised ML methods such as variational autoencoders (VAE) have become widely adopted across multiple areas of physics, chemistry, and materials sciences due to their capability in disentangling representations and ability to find latent manifolds for classification and regression of complex experimental data. Like other ML problems, VAEs require hyperparameter tuning, e.g., balancing the Kullback Leibler (KL) and reconstruction terms. However, the training process and resulting manifold topology and connectivity depend not only on hyperparameters, but also their evolution during training. Because of the inefficiency of exhaustive search in a high-dimensional hyperparameter space for the expensive to train models, here we explored a latent Bayesian optimization (zBO) approach for the hyperparameter trajectory optimization for the unsupervised and semi-supervised ML and demonstrate for joint-VAE with rotational invariances. We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system. The performance of the proposed approach has been discussed extensively, where it allows for any high dimensional hyperparameter tuning or trajectory optimization of other ML models.
Abstract:We propose a nested weighted Tchebycheff Multi-objective Bayesian optimization framework where we build a regression model selection procedure from an ensemble of models, towards better estimation of the uncertain parameters of the weighted-Tchebycheff expensive black-box multi-objective function. In existing work, a weighted Tchebycheff MOBO approach has been demonstrated which attempts to estimate the unknown utopia in formulating acquisition function, through calibration using a priori selected regression model. However, the existing MOBO model lacks flexibility in selecting the appropriate regression models given the guided sampled data and therefore, can under-fit or over-fit as the iterations of the MOBO progress, reducing the overall MOBO performance. As it is too complex to a priori guarantee a best model in general, this motivates us to consider a portfolio of different families of predictive models fitted with current training data, guided by the WTB MOBO; the best model is selected following a user-defined prediction root mean-square-error-based approach. The proposed approach is implemented in optimizing a multi-modal benchmark problem and a thin tube design under constant loading of temperature-pressure, with minimizing the risk of creep-fatigue failure and design cost. Finally, the nested weighted Tchebycheff MOBO model performance is compared with different MOBO frameworks with respect to accuracy in parameter estimation, Pareto-optimal solutions and function evaluation cost. This method is generalized enough to consider different families of predictive models in the portfolio for best model selection, where the overall design architecture allows for solving any high-dimensional (multiple functions) complex black-box problems and can be extended to any other global criterion multi-objective optimization methods where prior knowledge of utopia is required.