Abstract:As 6G emerges, cellular systems are envisioned to integrate sensing with communication capabilities, leading to multi-faceted communication and sensing (JCAS). This paper presents a comprehensive cross-layer overview of the Hexa-X-II project's endeavors in JCAS, aligning 6G use cases with service requirements and pinpointing distinct scenarios that bridge communication and sensing. This work relates to these scenarios through the lens of the cross-layer physical and networking domains, covering models, deployments, resource allocation, storage challenges, computational constraints, interfaces, and innovative functions.
Abstract:5G communication system can support the demanding quality-of-service (QoS) requirements of many advanced vehicle-to-everything (V2X) use cases. However, the safe and efficient driving, especially of automated vehicles, may be affected by sudden changes of the provided QoS. For that reason, the prediction of the QoS changes and the early notification of these predicted changes to the vehicles have been recently enabled by 5G communication systems. This solution enables the vehicles to avoid or mitigate the effect of sudden QoS changes at the application level. This article describes how QoS prediction could be generated by a 5G communication system and delivered to a V2X application. The tele-operated driving use case is used as an example to analyze the feasibility of a QoS prediction scheme. Useful recommendations for the development of a QoS prediction solution are provided, while open research topics are identified.
Abstract:The Third Generation Partnership Project (3GPP) has recently published its Release 16 that includes the first Vehicle to-Everything (V2X) standard based on the 5G New Radio (NR) air interface. 5G NR V2X introduces advanced functionalities on top of the 5G NR air interface to support connected and automated driving use cases with stringent requirements. This paper presents an in-depth tutorial of the 3GPP Release 16 5G NR V2X standard for V2X communications, with a particular focus on the sidelink, since it is the most significant part of 5G NR V2X. The main part of the paper is an in-depth treatment of the key aspects of 5G NR V2X: the physical layer, the resource allocation, the quality of service management, the enhancements introduced to the Uu interface and the mobility management for V2N (Vehicle to Network) communications, as well as the co-existence mechanisms between 5G NR V2X and LTE V2X. We also review the use cases, the system architecture, and describe the evaluation methodology and simulation assumptions for 5G NR V2X. Finally, we provide an outlook on possible 5G NR V2X enhancements, including those identified within Release 17.