Abstract:As particle accelerators grow in complexity, traditional control methods face increasing challenges in achieving optimal performance. This paper envisions a paradigm shift: a decentralized multi-agent framework for accelerator control, powered by Large Language Models (LLMs) and distributed among autonomous agents. We present a proposition of a self-improving decentralized system where intelligent agents handle high-level tasks and communication and each agent is specialized control individual accelerator components. This approach raises some questions: What are the future applications of AI in particle accelerators? How can we implement an autonomous complex system such as a particle accelerator where agents gradually improve through experience and human feedback? What are the implications of integrating a human-in-the-loop component for labeling operational data and providing expert guidance? We show two examples, where we demonstrate viability of such architecture.
Abstract:High-power multi-beam klystrons represent a key component to amplify RF to generate the accelerating field of the superconducting radio frequency (SRF) cavities at European XFEL. Exchanging these high-power components takes time and effort, thus it is necessary to minimize maintenance and downtime and at the same time maximize the device's operation. In an attempt to explore the behavior of klystrons using machine learning, we completed a series of experiments on our klystrons to determine various operational modes and conduct feature extraction and dimensionality reduction to extract the most valuable information about a normal operation. To analyze recorded data we used state-of-the-art data-driven learning techniques and recognized the most promising components that might help us better understand klystron operational states and identify early on possible faults or anomalies.
Abstract:Navigating the landscape of particle accelerators has become increasingly challenging with recent surges in contributions. These intricate devices challenge comprehension, even within individual facilities. To address this, we introduce PACuna, a fine-tuned language model refined through publicly available accelerator resources like conferences, pre-prints, and books. We automated data collection and question generation to minimize expert involvement and make the data publicly available. PACuna demonstrates proficiency in addressing intricate accelerator questions, validated by experts. Our approach shows adapting language models to scientific domains by fine-tuning technical texts and auto-generated corpora capturing the latest developments can further produce pre-trained models to answer some intricate questions that commercially available assistants cannot and can serve as intelligent assistants for individual facilities.
Abstract:In this paper, we show a textual analysis of past ICALEPCS and IPAC conference proceedings to gain insights into the research trends and topics discussed in the field. We use natural language processing techniques to extract meaningful information from the abstracts and papers of past conference proceedings. We extract topics to visualize and identify trends, analyze their evolution to identify emerging research directions, and highlight interesting publications based solely on their content with an analysis of their network. Additionally, we will provide an advanced search tool to better search the existing papers to prevent duplication and easier reference findings. Our analysis provides a comprehensive overview of the research landscape in the field and helps researchers and practitioners to better understand the state-of-the-art and identify areas for future research.
Abstract:Refraction is a common physical phenomenon and has long been researched in computer vision. Objects imaged through a refractive object appear distorted in the image as a function of the shape of the interface between the media. This hinders many computer vision applications, but can be utilized for obtaining the geometry of the refractive interface. Previous approaches for refractive surface recovery largely relied on various priors or additional information like multiple images of the analyzed surface. In contrast, we claim that a simple energy function based on Snell's law enables the reconstruction of an arbitrary refractive surface geometry using just a single image and known background texture and geometry. In the case of a single point, Snell's law has two degrees of freedom, therefore to estimate a surface depth, we need additional information. We show that solving for an entire surface at once introduces implicit parameter-free spatial regularization and yields convincing results when an intelligent initial guess is provided. We demonstrate our approach through simulations and real-world experiments, where the reconstruction shows encouraging results in the single-frame monocular setting.