Abstract:High-power multi-beam klystrons represent a key component to amplify RF to generate the accelerating field of the superconducting radio frequency (SRF) cavities at European XFEL. Exchanging these high-power components takes time and effort, thus it is necessary to minimize maintenance and downtime and at the same time maximize the device's operation. In an attempt to explore the behavior of klystrons using machine learning, we completed a series of experiments on our klystrons to determine various operational modes and conduct feature extraction and dimensionality reduction to extract the most valuable information about a normal operation. To analyze recorded data we used state-of-the-art data-driven learning techniques and recognized the most promising components that might help us better understand klystron operational states and identify early on possible faults or anomalies.
Abstract:Navigating the landscape of particle accelerators has become increasingly challenging with recent surges in contributions. These intricate devices challenge comprehension, even within individual facilities. To address this, we introduce PACuna, a fine-tuned language model refined through publicly available accelerator resources like conferences, pre-prints, and books. We automated data collection and question generation to minimize expert involvement and make the data publicly available. PACuna demonstrates proficiency in addressing intricate accelerator questions, validated by experts. Our approach shows adapting language models to scientific domains by fine-tuning technical texts and auto-generated corpora capturing the latest developments can further produce pre-trained models to answer some intricate questions that commercially available assistants cannot and can serve as intelligent assistants for individual facilities.
Abstract:In this paper, we show a textual analysis of past ICALEPCS and IPAC conference proceedings to gain insights into the research trends and topics discussed in the field. We use natural language processing techniques to extract meaningful information from the abstracts and papers of past conference proceedings. We extract topics to visualize and identify trends, analyze their evolution to identify emerging research directions, and highlight interesting publications based solely on their content with an analysis of their network. Additionally, we will provide an advanced search tool to better search the existing papers to prevent duplication and easier reference findings. Our analysis provides a comprehensive overview of the research landscape in the field and helps researchers and practitioners to better understand the state-of-the-art and identify areas for future research.