Abstract:Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (\url{https://github.com/GEM-benchmark/NL-Augmenter}).
Abstract:We explore the use of traditional and contemporary hidden Markov models (HMMs) for sequential physiological data analysis and sepsis prediction in preterm infants. We investigate the use of classical Gaussian mixture model based HMM, and a recently proposed neural network based HMM. To improve the neural network based HMM, we propose a discriminative training approach. Experimental results show the potential of HMMs over logistic regression, support vector machine and extreme learning machine.