Abstract:An argument can be seen as a pair consisting of a set of premises and a claim supported by them. Arguments used by humans are often enthymemes, i.e., some premises are implicit. To better understand, evaluate, and compare enthymemes, it is essential to decode them, i.e., to find the missing premisses. Many enthymeme decodings are possible. We need to distinguish between reasonable decodings and unreasonable ones. However, there is currently no research in the literature on "How to evaluate decodings?". To pave the way and achieve this goal, we introduce seven criteria related to decoding, based on different research areas. Then, we introduce the notion of criterion measure, the objective of which is to evaluate a decoding with regard to a certain criterion. Since such measures need to be validated, we introduce several desirable properties for them, called axioms. Another main contribution of the paper is the construction of certain criterion measures that are validated by our axioms. Such measures can be used to identify the best enthymemes decodings.
Abstract:Argument mining is natural language processing technology aimed at identifying arguments in text. Furthermore, the approach is being developed to identify the premises and claims of those arguments, and to identify the relationships between arguments including support and attack relationships. In this paper, we assume that an argument map contains the premises and claims of arguments, and support and attack relationships between them, that have been identified by argument mining. So from a piece of text, we assume an argument map is obtained automatically by natural language processing. However, to understand and to automatically analyse that argument map, it would be desirable to instantiate that argument map with logical arguments. Once we have the logical representation of the arguments in an argument map, we can use automated reasoning to analyze the argumentation (e.g. check consistency of premises, check validity of claims, and check the labelling on each arc corresponds with thw logical arguments). We address this need by using classical logic for representing the explicit information in the text, and using default logic for representing the implicit information in the text. In order to investigate our proposal, we consider some specific options for instantiation.
Abstract:Natural language inference (NLI), also known as Recognizing Textual Entailment (RTE), is an important aspect of natural language understanding. Most research now uses machine learning and deep learning to perform this task on specific datasets, meaning their solution is not explainable nor explicit. To address the need for an explainable approach to RTE, we propose a novel pipeline that is based on translating text into an Abstract Meaning Representation (AMR) graph. For this we use a pre-trained AMR parser. We then translate the AMR graph into propositional logic and use a SAT solver for automated reasoning. In text, often commonsense suggests that an entailment (or contradiction) relationship holds between a premise and a claim, but because different wordings are used, this is not identified from their logical representations. To address this, we introduce relaxation methods to allow replacement or forgetting of some propositions. Our experimental results show this pipeline performs well on four RTE datasets.
Abstract:Cooking recipes are one of the most readily available kinds of procedural text. They consist of natural language instructions that can be challenging to interpret. In this paper, we propose a model to identify relevant information from recipes and generate a graph to represent the sequence of actions in the recipe. In contrast with other approaches, we use an unsupervised approach. We iteratively learn the graph structure and the parameters of a $\mathsf{GNN}$ encoding the texts (text-to-graph) one sequence at a time while providing the supervision by decoding the graph into text (graph-to-text) and comparing the generated text to the input. We evaluate the approach by comparing the identified entities with annotated datasets, comparing the difference between the input and output texts, and comparing our generated graphs with those generated by state of the art methods.
Abstract:Decoding the core of procedural texts, exemplified by cooking recipes, is crucial for intelligent reasoning and instruction automation. Procedural texts can be comprehensively defined as a sequential chain of steps to accomplish a task employing resources. From a cooking perspective, these instructions can be interpreted as a series of modifications to a food preparation, which initially comprises a set of ingredients. These changes involve transformations of comestible resources. For a model to effectively reason about cooking recipes, it must accurately discern and understand the inputs and outputs of intermediate steps within the recipe. Aiming to address this, we present a new corpus of cooking recipes enriched with descriptions of intermediate steps of the recipes that explicate the input and output for each step. We discuss the data collection process, investigate and provide baseline models based on T5 and GPT-3.5. This work presents a challenging task and insight into commonsense reasoning and procedural text generation.
Abstract:Transformer language models (LMs) have been shown to represent concepts as directions in the latent space of hidden activations. However, for any given human-interpretable concept, how can we find its direction in the latent space? We present a technique called linear relational concepts (LRC) for finding concept directions corresponding to human-interpretable concepts at a given hidden layer in a transformer LM by first modeling the relation between subject and object as a linear relational embedding (LRE). While the LRE work was mainly presented as an exercise in understanding model representations, we find that inverting the LRE while using earlier object layers results in a powerful technique to find concept directions that both work well as a classifier and causally influence model outputs.
Abstract:Argument graphs provide an abstract representation of an argumentative situation. A bipolar argument graph is a directed graph where each node denotes an argument, and each arc denotes the influence of one argument on another. Here we assume that the influence is supporting, attacking, or ambiguous. In a bipolar argument graph, each argument is atomic and so it has no internal structure. Yet to better understand the nature of the individual arguments, and how they interact, it is important to consider their internal structure. To address this need, this paper presents a framework based on the use of logical arguments to instantiate bipolar argument graphs, and a set of possible constraints on instantiating arguments that take into account the internal structure of the arguments, and the types of relationship between arguments.
Abstract:Whilst cooking is a very important human activity, there has been little consideration given to how we can formalize recipes for use in a reasoning framework. We address this need by proposing a graphical formalization that captures the comestibles (ingredients, intermediate food items, and final products), and the actions on comestibles in the form of a labelled bipartite graph. We then propose formal definitions for comparing recipes, for composing recipes from subrecipes, and for deconstructing recipes into subrecipes. We also introduce and compare two formal definitions for substitution into recipes which are required when there are missing ingredients, or some actions are not possible, or because there is a need to change the final product somehow.
Abstract:Social norms underlie all human social interactions, yet formalizing and reasoning with them remains a major challenge for AI systems. We present a novel system for taking social rules of thumb (ROTs) in natural language from the Social Chemistry 101 dataset and converting them to first-order logic where reasoning is performed using a neuro-symbolic theorem prover. We accomplish this in several steps. First, ROTs are converted into Abstract Meaning Representation (AMR), which is a graphical representation of the concepts in a sentence, and align the AMR with RoBERTa embeddings. We then generate alternate simplified versions of the AMR via a novel algorithm, recombining and merging embeddings for added robustness against different wordings of text, and incorrect AMR parses. The AMR is then converted into first-order logic, and is queried with a neuro-symbolic theorem prover. The goal of this paper is to develop and evaluate a neuro-symbolic method which performs explicit reasoning about social situations in a logical form.
Abstract:Automated persuasion systems (APS) aim to persuade a user to believe something by entering into a dialogue in which arguments and counterarguments are exchanged. To maximize the probability that an APS is successful in persuading a user, it can identify a global policy that will allow it to select the best arguments it presents at each stage of the dialogue whatever arguments the user presents. However, in real applications, such as for healthcare, it is unlikely the utility of the outcome of the dialogue will be the same, or the exact opposite, for the APS and user. In order to deal with this situation, games in extended form have been harnessed for argumentation in Bi-party Decision Theory. This opens new problems that we address in this paper: (1) How can we use Machine Learning (ML) methods to predict utility functions for different subpopulations of users? and (2) How can we identify for a new user the best utility function from amongst those that we have learned? To this extent, we develop two ML methods, EAI and EDS, that leverage information coming from the users to predict their utilities. EAI is restricted to a fixed amount of information, whereas EDS can choose the information that best detects the subpopulations of a user. We evaluate EAI and EDS in a simulation setting and in a realistic case study concerning healthy eating habits. Results are promising in both cases, but EDS is more effective at predicting useful utility functions.