Abstract:An argument can be seen as a pair consisting of a set of premises and a claim supported by them. Arguments used by humans are often enthymemes, i.e., some premises are implicit. To better understand, evaluate, and compare enthymemes, it is essential to decode them, i.e., to find the missing premisses. Many enthymeme decodings are possible. We need to distinguish between reasonable decodings and unreasonable ones. However, there is currently no research in the literature on "How to evaluate decodings?". To pave the way and achieve this goal, we introduce seven criteria related to decoding, based on different research areas. Then, we introduce the notion of criterion measure, the objective of which is to evaluate a decoding with regard to a certain criterion. Since such measures need to be validated, we introduce several desirable properties for them, called axioms. Another main contribution of the paper is the construction of certain criterion measures that are validated by our axioms. Such measures can be used to identify the best enthymemes decodings.
Abstract:Argument mining is natural language processing technology aimed at identifying arguments in text. Furthermore, the approach is being developed to identify the premises and claims of those arguments, and to identify the relationships between arguments including support and attack relationships. In this paper, we assume that an argument map contains the premises and claims of arguments, and support and attack relationships between them, that have been identified by argument mining. So from a piece of text, we assume an argument map is obtained automatically by natural language processing. However, to understand and to automatically analyse that argument map, it would be desirable to instantiate that argument map with logical arguments. Once we have the logical representation of the arguments in an argument map, we can use automated reasoning to analyze the argumentation (e.g. check consistency of premises, check validity of claims, and check the labelling on each arc corresponds with thw logical arguments). We address this need by using classical logic for representing the explicit information in the text, and using default logic for representing the implicit information in the text. In order to investigate our proposal, we consider some specific options for instantiation.
Abstract:We aim at improving reasoning on inconsistent and uncertain data. We focus on knowledge-graph data, extended with time intervals to specify their validity, as regularly found in historical sciences. We propose principles on semantics for efficient Maximum A-Posteriori inference on the new Temporal Markov Logic Networks (TMLN) which extend the Markov Logic Networks (MLN) by uncertain temporal facts and rules. We examine total and partial temporal (in)consistency relations between sets of temporal formulae. Then we propose a new Temporal Parametric Semantics, which may combine several sub-functions, allowing to use different assessment strategies. Finally, we expose the constraints that semantics must respect to satisfy our principles.