Abstract:The ability to determine the pose of a rover in an inertial frame autonomously is a crucial capability necessary for the next generation of surface rover missions on other planetary bodies. Currently, most on-going rover missions utilize ground-in-the-loop interventions to manually correct for drift in the pose estimate and this human supervision bottlenecks the distance over which rovers can operate autonomously and carry out scientific measurements. In this paper, we present ShadowNav, an autonomous approach for global localization on the Moon with an emphasis on driving in darkness and at nighttime. Our approach uses the leading edge of Lunar craters as landmarks and a particle filtering approach is used to associate detected craters with known ones on an offboard map. We discuss the key design decisions in developing the ShadowNav framework for use with a Lunar rover concept equipped with a stereo camera and an external illumination source. Finally, we demonstrate the efficacy of our proposed approach in both a Lunar simulation environment and on data collected during a field test at Cinder Lakes, Arizona.
Abstract:Detecting Resident Space Objects (RSOs) and preventing collisions with other satellites is crucial. Recently, deep convolutional neural networks (DCNNs) have shown superior performance in object detection when large-scale datasets are available. However, collecting rich data of RSOs is difficult due to very few occurrences in the space images. Without sufficient data, it is challenging to comprehensively train DCNN detectors and make them effective for detecting RSOs in space images, let alone to estimate whether a detector is sufficiently robust. The lack of meaningful evaluation of different detectors could further affect the design and application of detection methods. To tackle this issue, we propose that the space images containing RSOs can be simulated to complement the shortage of raw data for better benchmarking. Accordingly, we introduce a novel simulation-augmented benchmarking framework for RSO detection (SAB-RSOD). In our framework, by making the best use of the hardware parameters of the sensor that captures real-world space images, we first develop a high-fidelity RSO simulator that can generate various realistic space images. Then, we use this simulator to generate images that contain diversified RSOs in space and annotate them automatically. Later, we mix the synthetic images with the real-world images, obtaining around 500 images for training with only the real-world images for evaluation. Under SAB-RSOD, we can train different popular object detectors like Yolo and Faster RCNN effectively, enabling us to evaluate their performance thoroughly. The evaluation results have shown that the amount of available data and image resolution are two key factors for robust RSO detection. Moreover, if using a lower resolution for higher efficiency, we demonstrated that a simple UNet-based detection method can already access high detection accuracy.