Abstract:State-of-the-art process discovery methods construct free-choice process models from event logs. Consequently, the constructed models do not take into account indirect dependencies between events. Whenever the input behaviour is not free-choice, these methods fail to provide a precise model. In this paper, we propose a novel approach for enhancing free-choice process models by adding non-free-choice constructs discovered a-posteriori via region-based techniques. This allows us to benefit from the performance of existing process discovery methods and the accuracy of the employed fundamental synthesis techniques. We prove that the proposed approach preserves fitness with respect to the event log while improving the precision when indirect dependencies exist. The approach has been implemented and tested on both synthetic and real-life datasets. The results show its effectiveness in repairing models discovered from event logs.
Abstract:This paper presents a command-line tool, called Entropia, that implements a family of conformance checking measures for process mining founded on the notion of entropy from information theory. The measures allow quantifying classical non-deterministic and stochastic precision and recall quality criteria for process models automatically discovered from traces executed by IT-systems and recorded in their event logs. A process model has "good" precision with respect to the log it was discovered from if it does not encode many traces that are not part of the log, and has "good" recall if it encodes most of the traces from the log. By definition, the measures possess useful properties and can often be computed quickly.