Abstract:Text classification, an integral task in natural language processing, involves the automatic categorization of text into predefined classes. Creating supervised labeled datasets for low-resource languages poses a considerable challenge. Unlocking the language potential of low-resource languages requires robust datasets with supervised labels. However, such datasets are scarce, and the label space is often limited. In our pursuit to address this gap, we aim to optimize existing labels/datasets in different languages. This research proposes a novel perspective on Universal Cross-Lingual Text Classification, leveraging a unified model across languages. Our approach involves blending supervised data from different languages during training to create a universal model. The supervised data for a target classification task might come from different languages covering different labels. The primary goal is to enhance label and language coverage, aiming for a label set that represents a union of labels from various languages. We propose the usage of a strong multilingual SBERT as our base model, making our novel training strategy feasible. This strategy contributes to the adaptability and effectiveness of the model in cross-lingual language transfer scenarios, where it can categorize text in languages not encountered during training. Thus, the paper delves into the intricacies of cross-lingual text classification, with a particular focus on its application for low-resource languages, exploring methodologies and implications for the development of a robust and adaptable universal cross-lingual model.
Abstract:Disease control experts inspect public health data streams daily for outliers worth investigating, like those corresponding to data quality issues or disease outbreaks. However, they can only examine a few of the thousands of maximally-tied outliers returned by univariate outlier detection methods applied to large-scale public health data streams. To help experts distinguish the most important outliers from these thousands of tied outliers, we propose a new task for algorithms to rank the outputs of any univariate method applied to each of many streams. Our novel algorithm for this task, which leverages hierarchical networks and extreme value analysis, performed the best across traditional outlier detection metrics in a human-expert evaluation using public health data streams. Most importantly, experts have used our open-source Python implementation since April 2023 and report identifying outliers worth investigating 9.1x faster than their prior baseline. Other organizations can readily adapt this implementation to create rankings from the outputs of their tailored univariate methods across large-scale streams.
Abstract:In our increasingly interconnected digital world, social media platforms have emerged as powerful channels for the dissemination of hate speech and offensive content. This work delves into the domain of hate speech detection, placing specific emphasis on three low-resource Indian languages: Bengali, Assamese, and Gujarati. The challenge is framed as a text classification task, aimed at discerning whether a tweet contains offensive or non-offensive content. Leveraging the HASOC 2023 datasets, we fine-tuned pre-trained BERT and SBERT models to evaluate their effectiveness in identifying hate speech. Our findings underscore the superiority of monolingual sentence-BERT models, particularly in the Bengali language, where we achieved the highest ranking. However, the performance in Assamese and Gujarati languages signifies ongoing opportunities for enhancement. Our goal is to foster inclusive online spaces by countering hate speech proliferation.
Abstract:Irregularities in public health data streams (like COVID-19 Cases) hamper data-driven decision-making for public health stakeholders. A real-time, computer-generated list of the most important, outlying data points from thousands of daily-updated public health data streams could assist an expert reviewer in identifying these irregularities. However, existing outlier detection frameworks perform poorly on this task because they do not account for the data volume or for the statistical properties of public health streams. Accordingly, we developed FlaSH (Flagging Streams in public Health), a practical outlier detection framework for public health data users that uses simple, scalable models to capture these statistical properties explicitly. In an experiment where human experts evaluate FlaSH and existing methods (including deep learning approaches), FlaSH scales to the data volume of this task, matches or exceeds these other methods in mean accuracy, and identifies the outlier points that users empirically rate as more helpful. Based on these results, FlaSH has been deployed on data streams used by public health stakeholders.
Abstract:The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy.
Abstract:Sentence representation from vanilla BERT models does not work well on sentence similarity tasks. Sentence-BERT models specifically trained on STS or NLI datasets are shown to provide state-of-the-art performance. However, building these models for low-resource languages is not straightforward due to the lack of these specialized datasets. This work focuses on two low-resource Indian languages, Hindi and Marathi. We train sentence-BERT models for these languages using synthetic NLI and STS datasets prepared using machine translation. We show that the strategy of NLI pre-training followed by STSb fine-tuning is effective in generating high-performance sentence-similarity models for Hindi and Marathi. The vanilla BERT models trained using this simple strategy outperform the multilingual LaBSE trained using a complex training strategy. These models are evaluated on downstream text classification and similarity tasks. We evaluate these models on real text classification datasets to show embeddings obtained from synthetic data training are generalizable to real datasets as well and thus represent an effective training strategy for low-resource languages. We also provide a comparative analysis of sentence embeddings from fast text models, multilingual BERT models (mBERT, IndicBERT, xlm-RoBERTa, MuRIL), multilingual sentence embedding models (LASER, LaBSE), and monolingual BERT models based on L3Cube-MahaBERT and HindBERT. We release L3Cube-MahaSBERT and HindSBERT, the state-of-the-art sentence-BERT models for Marathi and Hindi respectively. Our work also serves as a guide to building low-resource sentence embedding models.