Abstract:Broadening access to both computational and educational resources is critical to diffusing machine-learning (ML) innovation. However, today, most ML resources and experts are siloed in a few countries and organizations. In this paper, we describe our pedagogical approach to increasing access to applied ML through a massive open online course (MOOC) on Tiny Machine Learning (TinyML). We suggest that TinyML, ML on resource-constrained embedded devices, is an attractive means to widen access because TinyML both leverages low-cost and globally accessible hardware, and encourages the development of complete, self-contained applications, from data collection to deployment. To this end, a collaboration between academia (Harvard University) and industry (Google) produced a four-part MOOC that provides application-oriented instruction on how to develop solutions using TinyML. The series is openly available on the edX MOOC platform, has no prerequisites beyond basic programming, and is designed for learners from a global variety of backgrounds. It introduces pupils to real-world applications, ML algorithms, data-set engineering, and the ethical considerations of these technologies via hands-on programming and deployment of TinyML applications in both the cloud and their own microcontrollers. To facilitate continued learning, community building, and collaboration beyond the courses, we launched a standalone website, a forum, a chat, and an optional course-project competition. We also released the course materials publicly, hoping they will inspire the next generation of ML practitioners and educators and further broaden access to cutting-edge ML technologies.
Abstract:Heart Failure is a major component of healthcare expenditure and a leading cause of mortality worldwide. Despite higher inter-rater variability, endomyocardial biopsy (EMB) is still regarded as the standard technique, used to identify the cause (e.g. ischemic or non-ischemic cardiomyopathy, coronary artery disease, myocardial infarction etc.) of unexplained heart failure. In this paper, we focus on identifying cardiomyopathy as ischemic or non-ischemic. For this, we propose and implement a new unified architecture comprising CNN (inception-V3 model) and bidirectional LSTM (BiLSTM) with self-attention mechanism to predict the ischemic or non-ischemic to classify cardiomyopathy using histopathological images. The proposed model is based on self-attention that implicitly focuses on the information outputted from the hidden layers of BiLSTM. Through our results we demonstrate that this framework carries a high learning capacity and is able to improve the classification performance.