Abstract:This paper presents an integrated algorithmic framework for minimising product delivery costs in e-commerce (known as the cost-to-serve or C2S). One of the major challenges in e-commerce is the large volume of spatio-temporally diverse orders from multiple customers, each of which has to be fulfilled from one of several warehouses using a fleet of vehicles. This results in two levels of decision-making: (i) selection of a fulfillment node for each order (including the option of deferral to a future time), and then (ii) routing of vehicles (each of which can carry multiple orders originating from the same warehouse). We propose an approach that combines graph neural networks and reinforcement learning to train the node selection and vehicle routing agents. We include real-world constraints such as warehouse inventory capacity, vehicle characteristics such as travel times, service times, carrying capacity, and customer constraints including time windows for delivery. The complexity of this problem arises from the fact that outcomes (rewards) are driven both by the fulfillment node mapping as well as the routing algorithms, and are spatio-temporally distributed. Our experiments show that this algorithmic pipeline outperforms pure heuristic policies.
Abstract:Power grids, across the world, play an important societal and economical role by providing uninterrupted, reliable and transient-free power to several industries, businesses and household consumers. With the advent of renewable power resources and EVs resulting into uncertain generation and highly dynamic load demands, it has become ever so important to ensure robust operation of power networks through suitable management of transient stability issues and localize the events of blackouts. In the light of ever increasing stress on the modern grid infrastructure and the grid operators, this paper presents a reinforcement learning (RL) framework, PowRL, to mitigate the effects of unexpected network events, as well as reliably maintain electricity everywhere on the network at all times. The PowRL leverages a novel heuristic for overload management, along with the RL-guided decision making on optimal topology selection to ensure that the grid is operated safely and reliably (with no overloads). PowRL is benchmarked on a variety of competition datasets hosted by the L2RPN (Learning to Run a Power Network). Even with its reduced action space, PowRL tops the leaderboard in the L2RPN NeurIPS 2020 challenge (Robustness track) at an aggregate level, while also being the top performing agent in the L2RPN WCCI 2020 challenge. Moreover, detailed analysis depicts state-of-the-art performances by the PowRL agent in some of the test scenarios.