Abstract:Industry 5.0, which focuses on human and Artificial Intelligence (AI) collaboration for performing different tasks in manufacturing, involves a higher number of robots, Internet of Things (IoTs) devices and interconnections, Augmented/Virtual Reality (AR), and other smart devices. The huge involvement of these devices and interconnection in various critical areas, such as economy, health, education and defense systems, poses several types of potential security flaws. AI itself has been proven a very effective and powerful tool in different areas of cybersecurity, such as intrusion detection, malware detection, and phishing detection, among others. Just as in many application areas, cybersecurity professionals were reluctant to accept black-box ML solutions for cybersecurity applications. This reluctance pushed forward the adoption of eXplainable Artificial Intelligence (XAI) as a tool that helps explain how decisions are made in ML-based systems. In this survey, we present a comprehensive study of different XAI-based intrusion detection systems for industry 5.0, and we also examine the impact of explainability and interpretability on Cybersecurity practices through the lens of Adversarial XIDS (Adv-XIDS) approaches. Furthermore, we analyze the possible opportunities and challenges in XAI cybersecurity systems for industry 5.0 that elicit future research toward XAI-based solutions to be adopted by high-stakes industry 5.0 applications. We believe this rigorous analysis will establish a foundational framework for subsequent research endeavors within the specified domain.
Abstract:In this paper, we propose an image compression algorithm called Microshift. We employ an algorithm hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, then the sub-quantized values are further compressed. Two methods, the FAST and MRF model, are proposed to recover the bit-depth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. Our compression algorithm compresses images to 1.25 bits per pixel on average with PSNR of 33.16 dB, outperforming other on-chip compression algorithms. Then, we propose a hardware architecture and implement the algorithm on an FPGA and ASIC. The results on the VLSI design further validate the low hardware complexity and high power efficiency, showing our method is promising, particularly for low-power wireless vision sensor networks.
Abstract:This paper presents the first end-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation errors. Video frames are colorized in sequence based on the colorization history, and its coherency is further enforced by the temporal consistency loss. All of these components, learned end-to-end, help produce realistic videos with good temporal stability. Experiments show our result is superior to the state-of-the-art methods both quantitatively and qualitatively.