Abstract:How does the amount of compute available to a reinforcement learning (RL) policy affect its learning? Can policies using a fixed amount of parameters, still benefit from additional compute? The standard RL framework does not provide a language to answer these questions formally. Empirically, deep RL policies are often parameterized as neural networks with static architectures, conflating the amount of compute and the number of parameters. In this paper, we formalize compute bounded policies and prove that policies which use more compute can solve problems and generalize to longer-horizon tasks that are outside the scope of policies with less compute. Building on prior work in algorithmic learning and model-free planning, we propose a minimal architecture that can use a variable amount of compute. Our experiments complement our theory. On a set 31 different tasks spanning online and offline RL, we show that $(1)$ this architecture achieves stronger performance simply by using more compute, and $(2)$ stronger generalization on longer-horizon test tasks compared to standard feedforward networks or deep residual network using up to 5 times more parameters.
Abstract:We investigate the ability of Vision Language Models (VLMs) to perform visual perspective taking using a novel set of visual tasks inspired by established human tests. Our approach leverages carefully controlled scenes, in which a single humanoid minifigure is paired with a single object. By systematically varying spatial configurations - such as object position relative to the humanoid minifigure and the humanoid minifigure's orientation - and using both bird's-eye and surface-level views, we created 144 unique visual tasks. Each visual task is paired with a series of 7 diagnostic questions designed to assess three levels of visual cognition: scene understanding, spatial reasoning, and visual perspective taking. Our evaluation of several state-of-the-art models, including GPT-4-Turbo, GPT-4o, Llama-3.2-11B-Vision-Instruct, and variants of Claude Sonnet, reveals that while they excel in scene understanding, the performance declines significantly on spatial reasoning and further deteriorates on perspective-taking. Our analysis suggests a gap between surface-level object recognition and the deeper spatial and perspective reasoning required for complex visual tasks, pointing to the need for integrating explicit geometric representations and tailored training protocols in future VLM development.




Abstract:Text embeddings are essential for many tasks, such as document retrieval, clustering, and semantic similarity assessment. In this paper, we study how to contrastively train text embedding models in a compute-optimal fashion, given a suite of pre-trained decoder-only language models. Our innovation is an algorithm that produces optimal configurations of model sizes, data quantities, and fine-tuning methods for text-embedding models at different computational budget levels. The resulting recipe, which we obtain through extensive experiments, can be used by practitioners to make informed design choices for their embedding models. Specifically, our findings suggest that full fine-tuning and low-rank adaptation fine-tuning produce optimal models at lower and higher computational budgets respectively.