Abstract:In the realm of mobile edge computing (MEC), efficient computation task offloading plays a pivotal role in ensuring a seamless quality of experience (QoE) for users. Maintaining a high QoE is paramount in today's interconnected world, where users demand responsive and reliable services. This challenge stands as one of the most primary key factors contributing to handling dynamic and uncertain mobile environment. In this study, we delve into computation offloading in MEC systems, where strict task processing deadlines and energy constraints can adversely affect the system performance. We formulate the computation task offloading problem as a Markov decision process (MDP) to maximize the long-term QoE of each user individually. We propose a decentralized QoE-oriented computation offloading (QOCO) algorithm based on deep reinforcement learning (DRL) that empowers mobile devices to make their offloading decisions without requiring knowledge of decisions made by other devices. Through numerical studies, we evaluate the performance of QOCO. Simulation results validate that the QOCO algorithm efficiently exploits the computational resources of edge nodes. Consequently, it can complete 14% more tasks and reduce task delay and energy consumption by 9% and 6%, respectively. These together contribute to a significant improvement of at least 37% in average QoE compared to an existing algorithm.
Abstract:Current applied intelligent systems have crucial shortcomings either in reasoning the gathered knowledge, or representation of comprehensive integrated information. To address these limitations, we develop a formal transition system which is applied to the common artificial intelligence (AI) systems, to reason about the findings. The developed model was created by combining the Public Announcement Logic (PAL) and the Linear Temporal Logic (LTL), which will be done to analyze both single-framed data and the following time-series data. To do this, first, the achieved knowledge by an AI-based system (i.e., classifiers) for an individual time-framed data, will be taken, and then, it would be modeled by a PAL. This leads to developing a unified representation of knowledge, and the smoothness in the integration of the gathered and external experiences. Therefore, the model could receive the classifier's predefined -- or any external -- knowledge, to assemble them in a unified manner. Alongside the PAL, all the timed knowledge changes will be modeled, using a temporal logic transition system. Later, following by the translation of natural language questions into the temporal formulas, the satisfaction leads the model to answer that question. This interpretation integrates the information of the recognized input data, rules, and knowledge. Finally, we suggest a mechanism to reduce the investigated paths for the performance improvements, which results in a partial correction for an object-detection system.
Abstract:The Social Internet of Things (SIoT), integration of Internet of Things and Social networks paradigms, has been introduced to build a network of smart nodes which are capable of establishing social links. In order to deal with misbehavioral service provider nodes, service requestor nodes must evaluate their trustworthiness levels. In this paper, we propose a novel trust management mechanism in the SIoT to predict the most reliable service provider for a service requestor, that leads to reduce the risk of exposing to malicious nodes. We model an SIoT with a flexible bipartite graph (containing two sets of nodes: service providers and requestors), then build the corresponding social network among service requestor nodes, using Hellinger distance. After that, we develop a social trust model, by using nodes' centrality and similarity measures, to extract behavioral trust between the network nodes. Finally, a matrix factorization technique is designed to extract latent features of SIoT nodes to mitigate the data sparsity and cold start problems. We analyze the effect of parameters in the proposed trust prediction mechanism on prediction accuracy. The results indicate that feedbacks from the neighboring nodes of a specific service requestor with high Hellinger similarity in our mechanism outperforms the best existing methods. We also show that utilizing social trust model, which only considers the similarity measure, significantly improves the accuracy of the prediction mechanism. Furthermore, we evaluate the effectiveness of the proposed trust management system through a real-world SIoT application. Our results demonstrate that the proposed mechanism is resilient to different types of network attacks and it can accurately find the proper service provider with high trustworthiness.
Abstract:Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction.
Abstract:Graph comparison plays a major role in many network applications. We often need a similarity metric for comparing networks according to their structural properties. Various network features - such as degree distribution and clustering coefficient - provide measurements for comparing networks from different points of view, but a global and integrated distance metric is still missing. In this paper, we employ distance metric learning algorithms in order to construct an integrated distance metric for comparing structural properties of complex networks. According to natural witnesses of network similarities (such as network categories) the distance metric is learned by the means of a dataset of some labeled real networks. For evaluating our proposed method which is called NetDistance, we applied it as the distance metric in K-nearest-neighbors classification. Empirical results show that NetDistance outperforms previous methods, at least 20 percent, with respect to precision.