Abstract:As artificial intelligence (AI) applications continue to expand, there is a growing need for deep neural network (DNN) models. Although DNN models deployed at the edge are promising to provide AI as a service with low latency, their cooperation is yet to be explored. In this paper, we consider the DNN service providers share their computing resources as well as their models' parameters and allow other DNNs to offload their computations without mirroring. We propose a novel algorithm called coordinated DNNs on edge (\textbf{CoDE}) that facilitates coordination among DNN services by creating multi-task DNNs out of individual models. CoDE aims to find the optimal path that results in the lowest possible cost, where the cost reflects the inference delay, model accuracy, and local computation workload. With CoDE, DNN models can make new paths for inference by using their own or other models' parameters. We then evaluate the performance of CoDE through numerical experiments. The results demonstrate a $75\%$ reduction in the local service computation workload while degrading the accuracy by only $2\%$ and having the same inference time in a balanced load condition. Under heavy load, CoDE can further decrease the inference time by $30\%$ while the accuracy is reduced by only $4\%$.
Abstract:Indoor positioning plays a pivotal role in a wide range of applications, from smart homes to industrial automation. In this paper, we propose a comprehensive approach for accurate positioning in indoor environments through the integration of existing Wi-Fi and Bluetooth Low Energy (BLE) devices. The proposed algorithm involves acquiring the received signal strength indicator (RSSI) data from these devices and capturing the complex interactions between RSSI and positions. To enhance the accuracy of the collected data, we first use a Kalman filter for denoising RSSI values, then categorize them into distinct classes using the K-nearest neighbor (KNN) algorithm. Incorporating the filtered RSSI data and the class information obtained from KNN, we then introduce a recurrent neural network (RNN) architecture to estimate the positions with a high precision. We further evaluate the accuracy of our proposed algorithm through testbed experiments using ESP32 system on chip with integrated Wi-Fi and BLE. The results show that we can accurately estimate the positions with an average error of 61.29 cm, which demonstrates a 56\% enhancement compared to the state-of-the-art existing works.
Abstract:In the realm of mobile edge computing (MEC), efficient computation task offloading plays a pivotal role in ensuring a seamless quality of experience (QoE) for users. Maintaining a high QoE is paramount in today's interconnected world, where users demand responsive and reliable services. This challenge stands as one of the most primary key factors contributing to handling dynamic and uncertain mobile environment. In this study, we delve into computation offloading in MEC systems, where strict task processing deadlines and energy constraints can adversely affect the system performance. We formulate the computation task offloading problem as a Markov decision process (MDP) to maximize the long-term QoE of each user individually. We propose a decentralized QoE-oriented computation offloading (QOCO) algorithm based on deep reinforcement learning (DRL) that empowers mobile devices to make their offloading decisions without requiring knowledge of decisions made by other devices. Through numerical studies, we evaluate the performance of QOCO. Simulation results validate that the QOCO algorithm efficiently exploits the computational resources of edge nodes. Consequently, it can complete 14% more tasks and reduce task delay and energy consumption by 9% and 6%, respectively. These together contribute to a significant improvement of at least 37% in average QoE compared to an existing algorithm.