Abstract:Conversion prediction plays an important role in online advertising since Cost-Per-Action (CPA) has become one of the primary campaign performance objectives in the industry. Unlike click prediction, conversions have different types in nature, and each type may be associated with different decisive factors. In this paper, we formulate conversion prediction as a multi-task learning problem, so that the prediction models for different types of conversions can be learned together. These models share feature representations, but have their specific parameters, providing the benefit of information-sharing across all tasks. We then propose Multi-Task Field-weighted Factorization Machine (MT-FwFM) to solve these tasks jointly. Our experiment results show that, compared with two state-of-the-art models, MT-FwFM improve the AUC by 0.74% and 0.84% on two conversion types, and the weighted AUC across all conversion types is also improved by 0.50%.
Abstract:Click-through rate (CTR) prediction is a critical task in online display advertising. The data involved in CTR prediction are typically multi-field categorical data, i.e., every feature is categorical and belongs to one and only one field. One of the interesting characteristics of such data is that features from one field often interact differently with features from different other fields. Recently, Field-aware Factorization Machines (FFMs) have been among the best performing models for CTR prediction by explicitly modeling such difference. However, the number of parameters in FFMs is in the order of feature number times field number, which is unacceptable in the real-world production systems. In this paper, we propose Field-weighted Factorization Machines (FwFMs) to model the different feature interactions between different fields in a much more memory-efficient way. Our experimental evaluations show that FwFMs can achieve competitive prediction performance with only as few as 4% parameters of FFMs. When using the same number of parameters, FwFMs can bring 0.92% and 0.47% AUC lift over FFMs on two real CTR prediction data sets.