Abstract:Contemporary radio access networks employ link adaption (LA) algorithms to optimize the modulation and coding schemes to adapt to the prevailing propagation conditions and are near-optimal in terms of the achieved spectral efficiency. LA is a challenging task in the presence of mobility, fast fading, and imperfect channel quality information and limited knowledge of the receiver characteristics at the transmitter, which render model-based LA algorithms complex and suboptimal. Model-based LA is especially difficult as connected user equipment devices become increasingly heterogeneous in terms of receiver capabilities, antenna configurations and hardware characteristics. Recognizing these difficulties, previous works have proposed reinforcement learning (RL) for LA, which faces deployment difficulties due to their potential negative impacts on live performance. To address this challenge, this paper considers offline RL to learn LA policies from data acquired in live networks with minimal or no intrusive effects on the network operation. We propose three LA designs based on batch-constrained deep Q-learning, conservative Q-learning, and decision transformers, showing that offline RL algorithms can achieve performance of state-of-the-art online RL methods when data is collected with a proper behavioral policy.
Abstract:Dealing with Partially Observable Markov Decision Processes is notably a challenging task. We face an average-reward infinite-horizon POMDP setting with an unknown transition model, where we assume the knowledge of the observation model. Under this assumption, we propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy. Then, we propose the OAS-UCRL algorithm that implicitly balances the exploration-exploitation trade-off following the $\textit{optimism in the face of uncertainty}$ principle. The algorithm runs through episodes of increasing length. For each episode, the optimal belief-based policy of the estimated POMDP interacts with the environment and collects samples that will be used in the next episode by the OAS estimation procedure to compute a new estimate of the POMDP parameters. Given the estimated model, an optimization oracle computes the new optimal policy. We show the consistency of the OAS procedure, and we prove a regret guarantee of order $\mathcal{O}(\sqrt{T \log(T)})$ for the proposed OAS-UCRL algorithm. We compare against the oracle playing the optimal stochastic belief-based policy and show the efficient scaling of our approach with respect to the dimensionality of the state, action, and observation space. We finally conduct numerical simulations to validate and compare the proposed technique with other baseline approaches.
Abstract:In this work, we present a novel framework for Best Arm Identification (BAI) under fairness constraints, a setting that we refer to as \textit{F-BAI} (fair BAI). Unlike traditional BAI, which solely focuses on identifying the optimal arm with minimal sample complexity, F-BAI also includes a set of fairness constraints. These constraints impose a lower limit on the selection rate of each arm and can be either model-agnostic or model-dependent. For this setting, we establish an instance-specific sample complexity lower bound and analyze the \textit{price of fairness}, quantifying how fairness impacts sample complexity. Based on the sample complexity lower bound, we propose F-TaS, an algorithm provably matching the sample complexity lower bound, while ensuring that the fairness constraints are satisfied. Numerical results, conducted using both a synthetic model and a practical wireless scheduling application, show the efficiency of F-TaS in minimizing the sample complexity while achieving low fairness violations.
Abstract:We study the problem of exploration in Reinforcement Learning and present a novel model-free solution. We adopt an information-theoretical viewpoint and start from the instance-specific lower bound of the number of samples that have to be collected to identify a nearly-optimal policy. Deriving this lower bound along with the optimal exploration strategy entails solving an intricate optimization problem and requires a model of the system. In turn, most existing sample optimal exploration algorithms rely on estimating the model. We derive an approximation of the instance-specific lower bound that only involves quantities that can be inferred using model-free approaches. Leveraging this approximation, we devise an ensemble-based model-free exploration strategy applicable to both tabular and continuous Markov decision processes. Numerical results demonstrate that our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches
Abstract:Reinforcement Learning aims at identifying and evaluating efficient control policies from data. In many real-world applications, the learner is not allowed to experiment and cannot gather data in an online manner (this is the case when experimenting is expensive, risky or unethical). For such applications, the reward of a given policy (the target policy) must be estimated using historical data gathered under a different policy (the behavior policy). Most methods for this learning task, referred to as Off-Policy Evaluation (OPE), do not come with accuracy and certainty guarantees. We present a novel OPE method based on Conformal Prediction that outputs an interval containing the true reward of the target policy with a prescribed level of certainty. The main challenge in OPE stems from the distribution shift due to the discrepancies between the target and the behavior policies. We propose and empirically evaluate different ways to deal with this shift. Some of these methods yield conformalized intervals with reduced length compared to existing approaches, while maintaining the same certainty level.
Abstract:We investigate the sample complexity of learning the optimal arm for multi-task bandit problems. Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor). The objective is to learn the optimal (representation, predictor)-pair for each task, under the assumption that the optimal representation is common to all tasks. Within this framework, efficient learning algorithms should transfer knowledge across tasks. We consider the best-arm identification problem for a fixed confidence, where, in each round, the learner actively selects both a task, and an arm, and observes the corresponding reward. We derive instance-specific sample complexity lower bounds satisfied by any $(\delta_G,\delta_H)$-PAC algorithm (such an algorithm identifies the best representation with probability at least $1-\delta_G$, and the best predictor for a task with probability at least $1-\delta_H$). We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(G\log(1/\delta_G)+ X\log(1/\delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors. By comparison, this scaling is significantly better than the classical best-arm identification algorithm that scales as $HGX\log(1/\delta)$.
Abstract:Non-differentiable controllers and rule-based policies are widely used for controlling real systems such as robots and telecommunication networks. In this paper, we present a practical reinforcement learning method which improves upon such existing policies with a model-based approach for better sample efficiency. Our method significantly outperforms state-of-the-art model-based methods, in terms of sample efficiency, on several widely used robotic benchmark tasks. We also demonstrate the effectiveness of our approach on a control problem in the telecommunications domain, where model-based methods have not previously been explored. Experimental results indicate that a strong initial performance can be achieved and combined with improved sample efficiency. We further motivate the design of our algorithm with a theoretical lower bound on the performance.
Abstract:A recent body of literature has investigated the effect of data poisoning attacks on data-driven control methods. Data poisoning attacks are well-known to the Machine Learning community, which, however, make use of assumptions, such as cross-sample independence, that in general do not hold for dynamical systems. As a consequence, attacks, and detection methods, operate differently from the i.i.d. setting studied in classical supervised problems. In particular, data poisoning attacks against data-driven control methods can be fundamentally seen as changing the behavior of the dynamical system described by the data. In this work, we study this phenomenon through the lens of statistical testing, and verify the detectability of different attacks for a linear dynamical system. On the basis of the arguments hereby presented, we propose a stealthy data poisoning attack that can escape classical detection tests, and conclude by showing the efficiency of the proposed attack.
Abstract:We investigate the problem of designing optimal stealthy poisoning attacks on the control channel of Markov decision processes (MDPs). This research is motivated by the recent interest of the research community for adversarial and poisoning attacks applied to MDPs, and reinforcement learning (RL) methods. The policies resulting from these methods have been shown to be vulnerable to attacks perturbing the observations of the decision-maker. In such an attack, drawing inspiration from adversarial examples used in supervised learning, the amplitude of the adversarial perturbation is limited according to some norm, with the hope that this constraint will make the attack imperceptible. However, such constraints do not grant any level of undetectability and do not take into account the dynamic nature of the underlying Markov process. In this paper, we propose a new attack formulation, based on information-theoretical quantities, that considers the objective of minimizing the detectability of the attack as well as the performance of the controlled process. We analyze the trade-off between the efficiency of the attack and its detectability. We conclude with examples and numerical simulations illustrating this trade-off.
Abstract:Recent successes in the Machine Learning community have led to a steep increase in the number of papers submitted to conferences. This increase made more prominent some of the issues that affect the current review process used by these conferences. The review process has several issues that may undermine the nature of scientific research, which is of being fully objective, apolitical, unbiased and free of misconduct (such as plagiarism, cheating, improper influence, and other improprieties). In this work, we study the problem of reviewers' recruitment, infringements of the double-blind process, fraudulent behaviors, biases in numerical ratings, and the appendix phenomenon (i.e., the fact that it is becoming more common to publish results in the appendix section of a paper). For each of these problems, we provide a short description and possible solutions. The goal of this work is to raise awareness in the Machine Learning community regarding these issues.