Abstract:Active Learning (AL) techniques aim to minimize the training data required to train a model for a given task. Pool-based AL techniques start with a small initial labeled pool and then iteratively pick batches of the most informative samples for labeling. Generally, the initial pool is sampled randomly and labeled to seed the AL iterations. While recent` studies have focused on evaluating the robustness of various query functions in AL, little to no attention has been given to the design of the initial labeled pool. Given the recent successes of learning representations in self-supervised/unsupervised ways, we propose to study if an intelligently sampled initial labeled pool can improve deep AL performance. We will investigate the effect of intelligently sampled initial labeled pools, including the use of self-supervised and unsupervised strategies, on deep AL methods. We describe our experimental details, implementation details, datasets, performance metrics as well as planned ablation studies in this proposal. If intelligently sampled initial pools improve AL performance, our work could make a positive contribution to boosting AL performance with no additional annotation, developing datasets with lesser annotation cost in general, and promoting further research in the use of unsupervised learning methods for AL.
Abstract:In light of growing challenges in agriculture with ever growing food demand across the world, efficient crop management techniques are necessary to increase crop yield. Precision agriculture techniques allow the stakeholders to make effective and customized crop management decisions based on data gathered from monitoring crop environments. Plant phenotyping techniques play a major role in accurate crop monitoring. Advancements in deep learning have made previously difficult phenotyping tasks possible. This survey aims to introduce the reader to the state of the art research in deep plant phenotyping.
Abstract:Panicle density of cereal crops such as wheat and sorghum is one of the main components for plant breeders and agronomists in understanding the yield of their crops. To phenotype the panicle density effectively, researchers agree there is a significant need for computer vision-based object detection techniques. Especially in recent times, research in deep learning-based object detection shows promising results in various agricultural studies. However, training such systems usually requires a lot of bounding-box labeled data. Since crops vary by both environmental and genetic conditions, acquisition of huge amount of labeled image datasets for each crop is expensive and time-consuming. Thus, to catalyze the widespread usage of automatic object detection for crop phenotyping, a cost-effective method to develop such automated systems is essential. We propose a weak supervision based active learning approach for panicle detection in cereal crops. In our approach, the model constantly interacts with a human annotator by iteratively querying the labels for only the most informative images, as opposed to all images in a dataset. Our query method is specifically designed for cereal crops which usually tend to have panicles with low variance in appearance. Our method reduces labeling costs by intelligently leveraging low-cost weak labels (object centers) for picking the most informative images for which strong labels (bounding boxes) are required. We show promising results on two publicly available cereal crop datasets - Sorghum and Wheat. On Sorghum, 6 variants of our proposed method outperform the best baseline method with more than 55% savings in labeling time. Similarly, on Wheat, 3 variants of our proposed methods outperform the best baseline method with more than 50% of savings in labeling time.