Abstract:Panicle density of cereal crops such as wheat and sorghum is one of the main components for plant breeders and agronomists in understanding the yield of their crops. To phenotype the panicle density effectively, researchers agree there is a significant need for computer vision-based object detection techniques. Especially in recent times, research in deep learning-based object detection shows promising results in various agricultural studies. However, training such systems usually requires a lot of bounding-box labeled data. Since crops vary by both environmental and genetic conditions, acquisition of huge amount of labeled image datasets for each crop is expensive and time-consuming. Thus, to catalyze the widespread usage of automatic object detection for crop phenotyping, a cost-effective method to develop such automated systems is essential. We propose a weak supervision based active learning approach for panicle detection in cereal crops. In our approach, the model constantly interacts with a human annotator by iteratively querying the labels for only the most informative images, as opposed to all images in a dataset. Our query method is specifically designed for cereal crops which usually tend to have panicles with low variance in appearance. Our method reduces labeling costs by intelligently leveraging low-cost weak labels (object centers) for picking the most informative images for which strong labels (bounding boxes) are required. We show promising results on two publicly available cereal crop datasets - Sorghum and Wheat. On Sorghum, 6 variants of our proposed method outperform the best baseline method with more than 55% savings in labeling time. Similarly, on Wheat, 3 variants of our proposed methods outperform the best baseline method with more than 50% of savings in labeling time.
Abstract:Active learning approaches in computer vision generally involve querying strong labels for data. However, previous works have shown that weak supervision can be effective in training models for vision tasks while greatly reducing annotation costs. Using this knowledge, we propose an adaptive supervision framework for active learning and demonstrate its effectiveness on the task of object detection. Instead of directly querying bounding box annotations (strong labels) for the most informative samples, we first query weak labels and optimize the model. Using a switching condition, the required supervision level can be increased. Our framework requires little to no change in model architecture. Our extensive experiments show that the proposed framework can be used to train good generalizable models with much lesser annotation costs than the state of the art active learning approaches for object detection.
Abstract:Accurate estimation of heading date of paddy rice greatly helps the breeders to understand the adaptability of different crop varieties in a given location. The heading date also plays a vital role in determining grain yield for research experiments. Visual examination of the crop is laborious and time consuming. Therefore, quick and precise estimation of heading date of paddy rice is highly essential. In this work, we propose a simple pipeline to detect regions containing flowering panicles from ground level RGB images of paddy rice. Given a fixed region size for an image, the number of regions containing flowering panicles is directly proportional to the number of flowering panicles present. Consequently, we use the flowering panicle region counts to estimate the heading date of the crop. The method is based on image classification using Convolutional Neural Networks (CNNs). We evaluated the performance of our algorithm on five time series image sequences of three different varieties of rice crops. When compared to the previous work on this dataset, the accuracy and general versatility of the method has been improved and heading date has been estimated with a mean absolute error of less than 1 day.