Honda Research Institute Europe, Offenbach am Main, Germany
Abstract:As modern system of systems (SoS) become increasingly adaptive and human centred, traditional architectures often struggle to support interoperability, reconfigurability, and effective human system interaction. This paper addresses these challenges by advancing the state of the art holonic architecture for SoS, offering two main contributions to support these adaptive needs. First, we propose a layered architecture for holons, which includes reasoning, communication, and capabilities layers. This design facilitates seamless interoperability among heterogeneous constituent systems by improving data exchange and integration. Second, inspired by principles of intelligent manufacturing, we introduce specialised holons namely, supervisor, planner, task, and resource holons aimed at enhancing the adaptability and reconfigurability of SoS. These specialised holons utilise large language models within their reasoning layers to support decision making and ensure real time adaptability. We demonstrate our approach through a 3D mobility case study focused on smart city transportation, showcasing its potential for managing complex, multimodal SoS environments. Additionally, we propose evaluation methods to assess the architecture efficiency and scalability,laying the groundwork for future empirical validations through simulations and real world implementations.
Abstract:This paper presents HyperGraphOS, an innovative Operating System designed for the scientific and engineering domains. It combines model based engineering, graph modeling, data containers, and computational tools, offering users a dynamic workspace for creating and managing complex models represented as customizable graphs. Using a web based architecture, HyperGraphOS requires only a modern browser to organize knowledge, documents, and content into interconnected models. Domain Specific Languages drive workspace navigation, code generation, AI integration, and process organization.The platform models function as both visual drawings and data structures, enabling dynamic modifications and inspection, both interactively and programmatically. HyperGraphOS was evaluated across various domains, including virtual avatars, robotic task planning using Large Language Models, and meta modeling for feature based code development. Results show significant improvements in flexibility, data management, computation, and document handling.
Abstract:A Multi Robot System (MRS) is the infrastructure of an intelligent cyberphysical system, where the robots understand the need of the human, and hence cooperate together to fulfill this need. Modeling an MRS is a crucial aspect of designing the proper system architecture, because this model can be used to simulate and measure the performance of the proposed architecture. However, an MRS solution architecture modeling is a very difficult problem, as it contains many dependent behaviors that dynamically change due to the current status of the overall system. In this paper, we introduce a general purpose MRS case study, where the humans initiate requests that are achieved by the available robots. These requests require different plans that use the current capabilities of the available robots. After proposing an architecture that defines the solution components, three steps are followed. First is modeling these components via Business Process Model and Notation (BPMN) language. BPMN provides a graphical notation to precisely represent the behaviors of every component, which is an essential need to model the solution. Second is to simulate these components behaviors and interaction in form of software agents. Java Agent DEvelopment (JADE) middleware has been used to develop and simulate the proposed model. JADE is based on a reactive agent approach, therefore it can dynamically represent the interaction among the solution components. Finally is to analyze the performance of the solution by defining a number of quantitative measurements, which can be obtained while simulating the system model in JADE middleware, therefore the solution can be analyzed and compared to another architecture.
Abstract:Leveraging Large Language Models (LLM) like GPT4 in the auto generation of code represents a significant advancement, yet it is not without its challenges. The ambiguity inherent in natural language descriptions of software poses substantial obstacles to generating deployable, structured artifacts. This research champions Model Driven Development (MDD) as a viable strategy to overcome these challenges, proposing an Agile Model Driven Development (AMDD) approach that employs GPT4 as a code generator. This approach enhances the flexibility and scalability of the code auto generation process and offers agility that allows seamless adaptation to changes in models or deployment environments. We illustrate this by modeling a multi agent Unmanned Vehicle Fleet (UVF) system using the Unified Modeling Language (UML), significantly reducing model ambiguity by integrating the Object Constraint Language (OCL) for code structure meta modeling, and the FIPA ontology language for communication semantics meta modeling. Applying GPT4 auto generation capabilities yields Java and Python code that is compatible with the JADE and PADE frameworks, respectively. Our thorough evaluation of the auto generated code verifies its alignment with expected behaviors and identifies enhancements in agent interactions. Structurally, we assessed the complexity of code derived from a model constrained solely by OCL meta models, against that influenced by both OCL and FIPA ontology meta models. The results indicate that the ontology constrained meta model produces inherently more complex code, yet its cyclomatic complexity remains within manageable levels, suggesting that additional meta model constraints can be incorporated without exceeding the high risk threshold for complexity.
Abstract:As Systems of Systems evolve into increasingly complex networks, harnessing their collective potential becomes paramount. Traditional SoS engineering approaches lack the necessary programmability to develop third party SoS level behaviors. To address this challenge, we propose a software defined approach to enable flexible and adaptive programming of SoS. We introduce the Holon Programming Model, a software-defined framework designed to meet these needs. The Holon Programming Model empowers developers to design and orchestrate complex system behaviors effectively, as illustrated in our disaster management scenario. This research outlines the Holon Programming Model theoretical underpinnings and practical applications, with the aim of driving further exploration and advancement in the field of software defined SoS
Abstract:A System of Systems (SoS) comprises Constituent Systems (CSs) that interact to provide unique capabilities beyond any single CS. A key challenge in SoS is ad-hoc scalability, meaning the system size changes during operation by adding or removing CSs. This research focuses on an Unmanned Vehicle Fleet (UVF) as a practical SoS example, addressing uncertainties like mission changes, range extensions, and UV failures. The proposed solution involves a self-adaptive system that dynamically adjusts UVF architecture, allowing the Mission Control Center (MCC) to scale UVF size automatically based on performance criteria or manually by operator decision. A multi-agent environment and rule management engine were implemented to simulate and verify this approach.
Abstract:Multi-Robot System (MRS) is a complex system that contains many different software and hardware components. This main problem addressed in this article is the MRS design complexity. The proposed solution provides a modular modeling and simulation technique that is based on formal system engineering method, therefore the MRS design complexity is decomposed and reduced. Modeling the MRS has been achieved via two formal Architecture Description Languages (ADLs), which are Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN), to design the system blueprints. By using those abstract design ADLs, the implementation of the project becomes technology agnostic. This allows to transfer the design concept from on programming language to another. During the simulation phase, a multi-agent environment is used to simulate the MRS blueprints. The simulation has been implemented in Java Agent Development (JADE) middleware. Therefore, its results can be used to analysis and verify the proposed MRS model in form of performance evaluation matrix.
Abstract:Worker-Robot Cooperation is a new industrial trend, which aims to sum the advantages of both the human and the industrial robot to afford a new intelligent manufacturing techniques. The cooperative manufacturing between the worker and the robot contains other elements such as the product parts and the manufacturing tools. All these production elements must cooperate in one manufacturing workcell to fulfill the production requirements. The manufacturing control system is the mean to connect all these cooperative elements together in one body. This manufacturing control system is distributed and autonomous due to the nature of the cooperative workcell. Accordingly, this article proposes the holonic control architecture as the manufacturing concept of the cooperative workcell. Furthermore, the article focuses on the feasibility of this manufacturing concept, by applying it over a case study that involves the cooperation between a dual-arm robot and a worker. During this case study, the worker uses a variety of hand gestures to cooperate with the robot to achieve the highest production flexibility
Abstract:Cooperative manufacturing is a new trend in industry, which depends on the existence of a collaborative robot. A collaborative robot is usually a light-weight robot which is capable of operating safely with a human co-worker in a shared work environment. During this cooperation, a vast amount of information is exchanged between the collaborative robot and the worker. This information constructs the cooperative manufacturing knowledge, which describes the production components and environment. In this research, we propose a holonic control solution, which uses the ontology concept to represent the cooperative manufacturing knowledge. The holonic control solution is implemented as an autonomous multi-agent system that exchanges the manufacturing knowledge based on an ontology model. Ultimately, the research illustrates and implements the proposed solution over a cooperative assembly scenario, which involves two workers and one collaborative robot, whom cooperate together to assemble a customized product.
Abstract:Generating code from a natural language using Large Language Models (LLMs) such as ChatGPT, seems groundbreaking. Yet, with more extensive use, it's evident that this approach has its own limitations. The inherent ambiguity of natural language presents challenges for complex software designs. Accordingly, our research offers an Agile Model-Driven Development (MDD) approach that enhances code auto-generation using OpenAI's GPT-4. Our work emphasizes "Agility" as a significant contribution to the current MDD method, particularly when the model undergoes changes or needs deployment in a different programming language. Thus, we present a case-study showcasing a multi-agent simulation system of an Unmanned Vehicle Fleet. In the first and second layer of our approach, we constructed a textual representation of the case-study using Unified Model Language (UML) diagrams. In the next layer, we introduced two sets of constraints that minimize model ambiguity. Object Constraints Language (OCL) is applied to fine-tune the code constructions details, while FIPA ontology is used to shape communication semantics and protocols. Ultimately, leveraging GPT-4, our last layer auto-generates code in both Java and Python. The Java code is deployed within the JADE framework, while the Python code is deployed in PADE framework. Concluding our research, we engaged in a comprehensive evaluation of the generated code. From a behavioural standpoint, the auto-generated code aligned perfectly with the expected UML sequence diagram. Structurally, we compared the complexity of code derived from UML diagrams constrained solely by OCL to that influenced by both OCL and FIPA-ontology. Results indicate that ontology-constrained model produce inherently more intricate code, but it remains manageable and low-risk for further testing and maintenance.