Abstract:Worker-Robot Cooperation is a new industrial trend, which aims to sum the advantages of both the human and the industrial robot to afford a new intelligent manufacturing techniques. The cooperative manufacturing between the worker and the robot contains other elements such as the product parts and the manufacturing tools. All these production elements must cooperate in one manufacturing workcell to fulfill the production requirements. The manufacturing control system is the mean to connect all these cooperative elements together in one body. This manufacturing control system is distributed and autonomous due to the nature of the cooperative workcell. Accordingly, this article proposes the holonic control architecture as the manufacturing concept of the cooperative workcell. Furthermore, the article focuses on the feasibility of this manufacturing concept, by applying it over a case study that involves the cooperation between a dual-arm robot and a worker. During this case study, the worker uses a variety of hand gestures to cooperate with the robot to achieve the highest production flexibility
Abstract:Cooperative manufacturing is a new trend in industry, which depends on the existence of a collaborative robot. A collaborative robot is usually a light-weight robot which is capable of operating safely with a human co-worker in a shared work environment. During this cooperation, a vast amount of information is exchanged between the collaborative robot and the worker. This information constructs the cooperative manufacturing knowledge, which describes the production components and environment. In this research, we propose a holonic control solution, which uses the ontology concept to represent the cooperative manufacturing knowledge. The holonic control solution is implemented as an autonomous multi-agent system that exchanges the manufacturing knowledge based on an ontology model. Ultimately, the research illustrates and implements the proposed solution over a cooperative assembly scenario, which involves two workers and one collaborative robot, whom cooperate together to assemble a customized product.