Abstract:Tabular data, widely used in industries like healthcare, finance, and transportation, presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure. This survey reviews the evolution of deep learning models for tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet. These models incorporate attention mechanisms, feature embeddings, and hybrid architectures to address tabular data complexities. TabNet uses sequential attention for instance-wise feature selection, improving interpretability, while SAINT combines self-attention and intersample attention to capture complex interactions across features and data points, both advancing scalability and reducing computational overhead. Hybrid architectures such as TabTransformer and FT-Transformer integrate attention mechanisms with multi-layer perceptrons (MLPs) to handle categorical and numerical data, with FT-Transformer adapting transformers for tabular datasets. Research continues to balance performance and efficiency for large datasets. Graph-based models like GNN4TDL and GANDALF combine neural networks with decision trees or graph structures, enhancing feature representation and mitigating overfitting in small datasets through advanced regularization techniques. Diffusion-based models like the Tabular Denoising Diffusion Probabilistic Model (TabDDPM) generate synthetic data to address data scarcity, improving model robustness. Similarly, models like TabPFN and Ptab leverage pre-trained language models, incorporating transfer learning and self-supervised techniques into tabular tasks. This survey highlights key advancements and outlines future research directions on scalability, generalization, and interpretability in diverse tabular data applications.
Abstract:This study explores traffic crash narratives in an attempt to inform and enhance effective traffic safety policies using text-mining analytics. Text mining techniques are employed to unravel key themes and trends within the narratives, aiming to provide a deeper understanding of the factors contributing to traffic crashes. This study collected crash data from five major freeways in Jordan that cover narratives of 7,587 records from 2018-2022. An unsupervised learning method was adopted to learn the pattern from crash data. Various text mining techniques, such as topic modeling, keyword extraction, and Word Co-Occurrence Network, were also used to reveal the co-occurrence of crash patterns. Results show that text mining analytics is a promising method and underscore the multifactorial nature of traffic crashes, including intertwining human decisions and vehicular conditions. The recurrent themes across all analyses highlight the need for a balanced approach to road safety, merging both proactive and reactive measures. Emphasis on driver education and awareness around animal-related incidents is paramount.
Abstract:More than half of all fatalities on U.S. highways occur due to roadway departure (RwD) each year. Previous research has explored various risk factors that contribute to RwD crashes, however, a comprehensive investigation considering the effect of lighting conditions has been insufficiently addressed. Using the Louisiana Department of Transportation and Development crash database, fatal and injury RwD crashes occurring on rural two-lane (R2L) highways between 2008-2017 were analyzed based on daylight and dark (with/without streetlight). This research employed a safe system approach to explore meaningful complex interactions among multidimensional crash risk factors. To accomplish this, an unsupervised data mining algorithm association rules mining (ARM) was utilized. Based on the generated rules, the findings reveal several interesting crash patterns in the daylight, dark-with-streetlight, and dark-no-streetlight, emphasizing the importance of investigating RwD crash patterns depending on the lighting conditions. In daylight, fatal RwD crashes are associated with cloudy weather conditions, distracted drivers, standing water on the roadway, no seat belt use, and construction zones. In dark lighting conditions (with/without streetlight), the majority of the RwD crashes are associated with alcohol/drug involvement, young drivers (15-24 years), driver condition (e.g., inattentive, distracted, illness/fatigued/asleep) and colliding with animal (s). The findings reveal how certain driver behavior patterns are connected to RwD crashes, such as a strong association between alcohol/drug intoxication and no seat belt usage in the dark-no-streetlight condition. Based on the identified crash patterns and behavioral characteristics under different lighting conditions, the findings could aid researchers and safety specialists in developing the most effective RwD crash mitigation strategies.
Abstract:The pattern of pedestrian crashes varies greatly depending on lighting circumstances, emphasizing the need of examining pedestrian crashes in various lighting conditions. Using Louisiana pedestrian fatal and injury crash data (2010-2019), this study applied Association Rules Mining (ARM) to identify the hidden pattern of crash risk factors according to three different lighting conditions (daylight, dark-with-streetlight, and dark-no-streetlight). Based on the generated rules, the results show that daylight pedestrian crashes are associated with children (less than 15 years), senior pedestrians (greater than 64 years), older drivers (>64 years), and other driving behaviors such as failure to yield, inattentive/distracted, illness/fatigue/asleep. Additionally, young drivers (15-24 years) are involved in severe pedestrian crashes in daylight conditions. This study also found pedestrian alcohol/drug involvement as the most frequent item in the dark-with-streetlight condition. This crash type is particularly associated with pedestrian action (crossing intersection/midblock), driver age (55-64 years), speed limit (30-35 mph), and specific area type (business with mixed residential area). Fatal pedestrian crashes are found to be associated with roadways with high-speed limits (>50 mph) during the dark without streetlight condition. Some other risk factors linked with high-speed limit related crashes are pedestrians walking with/against the traffic, presence of pedestrian dark clothing, pedestrian alcohol/drug involvement. The research findings are expected to provide an improved understanding of the underlying relationships between pedestrian crash risk factors and specific lighting conditions. Highway safety experts can utilize these findings to conduct a decision-making process for selecting effective countermeasures to reduce pedestrian crashes strategically.