Abstract:Visual object detection utilizing deep learning plays a vital role in computer vision and has extensive applications in transportation engineering. This paper focuses on detecting pavement marking quality during daytime using the You Only Look Once (YOLO) model, leveraging its advanced architectural features to enhance road safety through precise and real-time assessments. Utilizing image data from New Jersey, this study employed three YOLOv8 variants: YOLOv8m, YOLOv8n, and YOLOv8x. The models were evaluated based on their prediction accuracy for classifying pavement markings into good, moderate, and poor visibility categories. The results demonstrated that YOLOv8n provides the best balance between accuracy and computational efficiency, achieving the highest mean Average Precision (mAP) for objects with good visibility and demonstrating robust performance across various Intersections over Union (IoU) thresholds. This research enhances transportation safety by offering an automated and accurate method for evaluating the quality of pavement markings.
Abstract:Child bicyclists (14 years and younger) are among the most vulnerable road users, often experiencing severe injuries or fatalities in crashes. This study analyzed 2,394 child bicyclist crashes in Texas from 2017 to 2022 using two deep tabular learning models (ARM-Net and MambaNet). To address the issue of data imbalance, the SMOTEENN technique was applied, resulting in balanced datasets that facilitated accurate crash severity predictions across three categories: Fatal/Severe (KA), Moderate/Minor (BC), and No Injury (O). The findings revealed that MambaNet outperformed ARM-Net, achieving higher precision, recall, F1-scores, and accuracy, particularly in the KA and O categories. Both models highlighted challenges in distinguishing BC crashes due to overlapping characteristics. These insights underscored the value of advanced tabular deep learning methods and balanced datasets in understanding crash severity. While limitations such as reliance on categorical data exist, future research could explore continuous variables and real-time behavioral data to enhance predictive modeling and crash mitigation strategies.
Abstract:Young motorcyclists, particularly those aged 15 to 24 years old, face a heightened risk of severe crashes due to factors such as speeding, traffic violations, and helmet usage. This study aims to identify key factors influencing crash severity by analyzing 10,726 young motorcyclist crashes in Texas from 2017 to 2022. Two advanced tabular deep learning models, ARMNet and MambaNet, were employed, using an advanced resampling technique to address class imbalance. The models were trained to classify crashes into three severity levels, Fatal or Severe, Moderate or Minor, and No Injury. ARMNet achieved an accuracy of 87 percent, outperforming 86 percent of Mambanet, with both models excelling in predicting severe and no injury crashes while facing challenges in moderate crash classification. Key findings highlight the significant influence of demographic, environmental, and behavioral factors on crash outcomes. The study underscores the need for targeted interventions, including stricter helmet enforcement and educational programs customized to young motorcyclists. These insights provide valuable guidance for policymakers in developing evidence-based strategies to enhance motorcyclist safety and reduce crash severity.
Abstract:This systematic review explores the theoretical foundations, evolution, applications, and future potential of Kolmogorov-Arnold Networks (KAN), a neural network model inspired by the Kolmogorov-Arnold representation theorem. KANs distinguish themselves from traditional neural networks by using learnable, spline-parameterized functions instead of fixed activation functions, allowing for flexible and interpretable representations of high-dimensional functions. This review details KAN's architectural strengths, including adaptive edge-based activation functions that improve parameter efficiency and scalability in applications such as time series forecasting, computational biomedicine, and graph learning. Key advancements, including Temporal-KAN, FastKAN, and Partial Differential Equation (PDE) KAN, illustrate KAN's growing applicability in dynamic environments, enhancing interpretability, computational efficiency, and adaptability for complex function approximation tasks. Additionally, this paper discusses KAN's integration with other architectures, such as convolutional, recurrent, and transformer-based models, showcasing its versatility in complementing established neural networks for tasks requiring hybrid approaches. Despite its strengths, KAN faces computational challenges in high-dimensional and noisy data settings, motivating ongoing research into optimization strategies, regularization techniques, and hybrid models. This paper highlights KAN's role in modern neural architectures and outlines future directions to improve its computational efficiency, interpretability, and scalability in data-intensive applications.
Abstract:Tabular data, widely used in industries like healthcare, finance, and transportation, presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure. This survey reviews the evolution of deep learning models for tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet. These models incorporate attention mechanisms, feature embeddings, and hybrid architectures to address tabular data complexities. TabNet uses sequential attention for instance-wise feature selection, improving interpretability, while SAINT combines self-attention and intersample attention to capture complex interactions across features and data points, both advancing scalability and reducing computational overhead. Hybrid architectures such as TabTransformer and FT-Transformer integrate attention mechanisms with multi-layer perceptrons (MLPs) to handle categorical and numerical data, with FT-Transformer adapting transformers for tabular datasets. Research continues to balance performance and efficiency for large datasets. Graph-based models like GNN4TDL and GANDALF combine neural networks with decision trees or graph structures, enhancing feature representation and mitigating overfitting in small datasets through advanced regularization techniques. Diffusion-based models like the Tabular Denoising Diffusion Probabilistic Model (TabDDPM) generate synthetic data to address data scarcity, improving model robustness. Similarly, models like TabPFN and Ptab leverage pre-trained language models, incorporating transfer learning and self-supervised techniques into tabular tasks. This survey highlights key advancements and outlines future research directions on scalability, generalization, and interpretability in diverse tabular data applications.