Abstract:A proper form of data characterization can guide the process of learning-algorithm selection and model-performance estimation. The field of meta-learning has provided a rich body of work describing effective forms of data characterization using different families of meta-features (statistical, model-based, information-theoretic, topological, etc.). In this paper, we start with the abundant set of existing meta-features and propose a method to induce new abstract meta-features as latent variables in a deep neural network. We discuss the pitfalls of using traditional meta-features directly and argue for the importance of learning high-level task properties. We demonstrate our methodology using a deep neural network as a feature extractor. We demonstrate that 1) induced meta-models mapping abstract meta-features to generalization performance outperform other methods by ~18% on average, and 2) abstract meta-features attain high feature-relevance scores.
Abstract:Meta-learning is increasingly used to support the recommendation of machine learning algorithms and their configurations. Such recommendations are made based on meta-data, consisting of performance evaluations of algorithms on prior datasets, as well as characterizations of these datasets. These characterizations, also called meta-features, describe properties of the data which are predictive for the performance of machine learning algorithms trained on them. Unfortunately, despite being used in a large number of studies, meta-features are not uniformly described and computed, making many empirical studies irreproducible and hard to compare. This paper aims to remedy this by systematizing and standardizing data characterization measures used in meta-learning, and performing an in-depth analysis of their utility. Moreover, it presents MFE, a new tool for extracting meta-features from datasets and identify more subtle reproducibility issues in the literature, proposing guidelines for data characterization that strengthen reproducible empirical research in meta-learning.