Abstract:Motion-based association for Multi-Object Tracking (MOT) has recently re-achieved prominence with the rise of powerful object detectors. Despite this, little work has been done to incorporate appearance cues beyond simple heuristic models that lack robustness to feature degradation. In this paper, we propose a novel way to leverage objects' appearances to adaptively integrate appearance matching into existing high-performance motion-based methods. Building upon the pure motion-based method OC-SORT, we achieve 1st place on MOT20 and 2nd place on MOT17 with 63.9 and 64.9 HOTA, respectively. We also achieve 61.3 HOTA on the challenging DanceTrack benchmark as a new state-of-the-art even compared to more heavily-designed methods. The code and models are available at \url{https://github.com/GerardMaggiolino/Deep-OC-SORT}.
Abstract:Assessments help in evaluating the knowledge gained by a learner at any specific point as well as in continuous improvement of the curriculum design and the whole learning process. However, with the increase in students' enrollment at University level in either conventional or distance education environment, traditional ways of assessing students' work are becoming insufficient in terms of both time and effort. In distance education environment, such assessments become additionally more challenging in terms of hefty remuneration for hiring large number of tutors. The availability of automated tools to assist the evaluation of students' work and providing students with appropriate and timely feedback can really help in overcoming these problems. We believe that building such tools for assessing students' work for all kinds of courses in not yet possible. However, courses that involve some formal language of expression can be automated, such as, programming courses in Computer Science (CS) discipline. Instructors provide various practical exercises to students as assignments to build these skills. Usually, instructors manually grade and provide feedbacks on these assignments. Although in literature, various tools have been reported to automate this process, but most of these tools have been developed by the host institutions themselves for their own use. We at COMSATS Institute of Information Technology, Lahore are conducting a pioneer effort in Pakistan to automate the marking of assignments of introductory programming courses that involve C or C++ languages with the capability of associating appropriate feedbacks for students. In this paper, we basically identify different components that we believe are necessary in building an effective automated assessment system in the context of introductory programming courses that involve C/C++ programming.
Abstract:Artifacts are a common occurrence in Diffusion MRI (dMRI) scans. Identifying and removing them is essential to ensure the accuracy and viability of any post processing carried out on these scans. This makes QC (quality control) a crucial first step prior to any analysis of dMRI data. Several QC methods for artifact detection exist, however they suffer from problems like requiring manual intervention and the inability to generalize across different artifacts and datasets. In this paper, we propose an automated deep learning (DL) pipeline that utilizes a 3D-Densenet architecture to train a model on diffusion volumes for automatic artifact detection. Our method is applied on a vast dataset consisting of 9000 volumes sourced from 7 large clinical datasets. These datasets comprise scans from multiple scanners with different gradient directions, high and low b values, single shell and multi shell acquisitions. Additionally, they represent diverse subject demographics like the presence or absence of pathologies. Our QC method is found to accurately generalize across this heterogenous data by correctly detecting 92% artifacts on average across our test set. This consistent performance over diverse datasets underlines the generalizability of our method, which currently is a significant barrier hindering the widespread adoption of automated QC techniques. For these reasons, we believe that 3D-QCNet can be integrated in diffusion pipelines to effectively automate the arduous and time-intensive process of artifact detection.
Abstract:Recent NLP architectures have illustrated in various ways how semantic change can be captured across time and domains. However, in terms of evaluation there is a lack of benchmarks to compare the performance of these systems against each other. We present the results of the first shared task on unsupervised lexical semantic change detection (LSCD) in German based on the evaluation framework proposed by Schlechtweg et al. (2019).