Abstract:In recent years, street view imagery has grown to become one of the most important sources of geospatial data collection and urban analytics, which facilitates generating meaningful insights and assisting in decision-making. Synthesizing a street-view image from its corresponding satellite image is a challenging task due to the significant differences in appearance and viewpoint between the two domains. In this study, we screened 20 recent research papers to provide a thorough review of the state-of-the-art of how street-view images are synthesized from their corresponding satellite counterparts. The main findings are: (i) novel deep learning techniques are required for synthesizing more realistic and accurate street-view images; (ii) more datasets need to be collected for public usage; and (iii) more specific evaluation metrics need to be investigated for evaluating the generated images appropriately. We conclude that, due to applying outdated deep learning techniques, the recent literature failed to generate detailed and diverse street-view images.
Abstract:The massive proliferation of social media data represents a transformative moment in conflict studies. This data can provide unique insights into the spread and use of weaponry, but the scale and types of data are problematic for traditional open-source intelligence. This paper presents preliminary, transdisciplinary work using computer vision to identify specific weapon systems and the insignias of the armed groups using them. There is potential to not only track how weapons are distributed through networks of armed units but also to track which types of weapons are being used by the different types of state and non-state military actors in Ukraine. Such a system could ultimately be used to understand conflicts in real-time, including where humanitarian and medical aid is most needed. We believe that using AI to help automate such processes should be a high-priority goal for our community, with near-term real-world payoffs.
Abstract:Modern agriculture heavily relies on Site-Specific Farm Management practices, necessitating accurate detection, localization, and quantification of crops and weeds in the field, which can be achieved using deep learning techniques. In this regard, crop and weed-specific binary segmentation models have shown promise. However, uncontrolled field conditions limit their performance from one field to the other. To improve semantic model generalization, existing methods augment and synthesize agricultural data to account for uncontrolled field conditions. However, given highly varied field conditions, these methods have limitations. To overcome the challenges of model deterioration in such conditions, we propose utilizing data specific to other crops and weeds for our specific target problem. To achieve this, we propose a novel ensemble framework. Our approach involves utilizing different crop and weed models trained on diverse datasets and employing a teacher-student configuration. By using homogeneous stacking of base models and a trainable meta-architecture to combine their outputs, we achieve significant improvements for Canola crops and Kochia weeds on unseen test data, surpassing the performance of single semantic segmentation models. We identify the UNET meta-architecture as the most effective in this context. Finally, through ablation studies, we demonstrate and validate the effectiveness of our proposed model. We observe that including base models trained on other target crops and weeds can help generalize the model to capture varied field conditions. Lastly, we propose two novel datasets with varied conditions for comparisons.
Abstract:Optical emission spectroscopy of laser-produced plasmas, commonly known as laser-induced breakdown spectroscopy (LIBS), is an emerging analytical tool for rapid soil analysis. However, specific challenges with LIBS exist, such as matrix effects and quantification issues, that require further study in the application of LIBS, particularly for analysis of heterogeneous samples such as soils. Advancements in the applications of Machine Learning (ML) methods can address some of these issues, advancing the potential for LIBS in soil analysis. This article aims to review the progress of LIBS application combined with ML methods, focusing on methodological approaches used in reducing matrix effect, feature selection, quantification analysis, soil classification, and self-absorption. The performance of various adopted ML approaches is discussed, including their shortcomings and advantages, to provide researchers with a clear picture of the current status of ML applications in LIBS for improving its analytical capability. The challenges and prospects of LIBS development in soil analysis are proposed, offering a path toward future research. This review article emphasize ML tools for LIBS soil analysis that are broadly relevant for other LIBS applications.
Abstract:Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive social networks using images. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities.