Abstract:This paper examines potential biases and inconsistencies in emotional evocation of images produced by generative artificial intelligence (AI) models and their potential bias toward negative emotions. In particular, we assess this bias by comparing the emotions evoked by an AI-produced image to the emotions evoked by prompts used to create those images. As a first step, the study evaluates three approaches for identifying emotions in images -- traditional supervised learning, zero-shot learning with vision-language models, and cross-modal auto-captioning -- using EmoSet, a large dataset of image-emotion annotations that categorizes images across eight emotional types. Results show fine-tuned models, particularly Google's Vision Transformer (ViT), significantly outperform zero-shot and caption-based methods in recognizing emotions in images. For a cross-modality comparison, we then analyze the differences between emotions in text prompts -- via existing text-based emotion-recognition models -- and the emotions evoked in the resulting images. Findings indicate that AI-generated images frequently lean toward negative emotional content, regardless of the original prompt. This emotional skew in generative models could amplify negative affective content in digital spaces, perpetuating its prevalence and impact. The study advocates for a multidisciplinary approach to better align AI emotion recognition with psychological insights and address potential biases in generative AI outputs across digital media.
Abstract:The massive proliferation of social media data represents a transformative moment in conflict studies. This data can provide unique insights into the spread and use of weaponry, but the scale and types of data are problematic for traditional open-source intelligence. This paper presents preliminary, transdisciplinary work using computer vision to identify specific weapon systems and the insignias of the armed groups using them. There is potential to not only track how weapons are distributed through networks of armed units but also to track which types of weapons are being used by the different types of state and non-state military actors in Ukraine. Such a system could ultimately be used to understand conflicts in real-time, including where humanitarian and medical aid is most needed. We believe that using AI to help automate such processes should be a high-priority goal for our community, with near-term real-world payoffs.
Abstract:In this paper we present a near-complete dataset of over 3M videos from 61K channels over 2.5 years (June 2019 to December 2021) from the social video hosting platform BitChute, a commonly used alternative to YouTube. Additionally, we include a variety of video-level metadata, including comments, channel descriptions, and views for each video. The MeLa-BitChute dataset can be found at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KRD1VS.