Multi-organ segmentation, which identifies and separates different organs in medical images, is a fundamental task in medical image analysis. Recently, the immense success of deep learning motivated its wide adoption in multi-organ segmentation tasks. However, due to expensive labor costs and expertise, the availability of multi-organ annotations is usually limited and hence poses a challenge in obtaining sufficient training data for deep learning-based methods. In this paper, we aim to address this issue by combining off-the-shelf single-organ segmentation models to develop a multi-organ segmentation model on the target dataset, which helps get rid of the dependence on annotated data for multi-organ segmentation. To this end, we propose a novel dual-stage method that consists of a Model Adaptation stage and a Model Ensemble stage. The first stage enhances the generalization of each off-the-shelf segmentation model on the target domain, while the second stage distills and integrates knowledge from multiple adapted single-organ segmentation models. Extensive experiments on four abdomen datasets demonstrate that our proposed method can effectively leverage off-the-shelf single-organ segmentation models to obtain a tailored model for multi-organ segmentation with high accuracy.