Millimeter wave (mmWave) has attracted considerable attention due to its wide bandwidth and high frequency. However, it is highly susceptible to blockages, resulting in significant degradation of the coverage and the sum rate. A promising approach is deploying distributed reconfigurable intelligent surfaces (RISs), which can establish extra communication links. In this paper, we investigate the impact of distributed RISs on the coverage probability and the sum rate in mmWave wireless communication systems. Specifically, we first introduce the system model, which includes the blockage, the RIS and the user distribution models, leveraging the Poisson point process. Then, we define the association criterion and derive the conditional coverage probabilities for the two cases of direct association and reflective association through RISs. Finally, we combine the two cases using Campbell's theorem and the total probability theorem to obtain the closed-form expressions for the ergodic coverage probability and the sum rate. Simulation results validate the effectiveness of the proposed analytical approach, demonstrating that the deployment of distributed RISs significantly improves the ergodic coverage probability by 45.4% and the sum rate by over 1.5 times.