Tomographic image reconstruction with deep learning is an emerging field of applied artificial intelligence but a recent study reveals that deep reconstruction networks, such as well-known AUTOMAP, are unstable for computed tomography (CT) and magnetic resonance imaging (MRI). Specifically, three kinds of instabilities were identified: (1) strong output artefacts from tiny perturbation, (2) poor detection of small features, and (3) decreased performance with increased input data. These instabilities are believed to be from lacking kernel awareness and nontrivial to overcome, but compressed sensing (CS) reconstruction was reported to be stable due to its kernel awareness. Since deep reconstruction may potentially become the main driving force to achieve better image quality, stabilizing deep reconstruction networks is an urgent challenge. Here we propose an Analytic, Compressive, Iterative Deep (ACID) network to fundamentally address this challenge. Instead of only using deep learning or compressed sensing, ACID consists of four modules including deep reconstruction, CS, analytic mapping, and iterative refinement. In our experiments, ACID eliminated all three kinds of instabilities and significantly improved image quality relative to the methods in the aforementioned PNAS study. ACID is only an example of integrating diverse algorithmic ingredients but it has clearly demonstrated that data-driven reconstruction can be stabilized to outperform reconstruction using CS alone. The power of ACID comes from a unique combination of a deep reconstruction network trained on big data, CS via advanced optimization, and iterative refinement that stabilizes the whole workflow. We anticipate that this integrative closed-loop data driven approach will add great value to clinical and other applications.