https://github.com/wwsource/SplatFlow.
Occlusion problem remains a key challenge in Optical Flow Estimation (OFE) despite the recent significant progress brought by deep learning in the field. Most existing deep learning OFE methods, especially those based on two frames, cannot properly handle occlusions, in part because there is no significant feature similarity in occluded regions. The multi-frame settings have the potential to mitigate the occlusion issue in OFE. However, the problem of Multi-frame OFE (MOFE) remains underexplored, and the limited works are specially designed for pyramid backbones and obtain the aligned temporal information by time-consuming backward flow calculation or non-differentiable forward warping transformation. To address these shortcomings, we propose an efficient MOFE framework named SplatFlow, which is realized by introducing the differentiable splatting transformation to align the temporal information, designing a One-to-Many embedding method to densely guide the current frame's estimation, and further remodelling the existing two-frame backbones. The proposed SplatFlow is very efficient yet more accurate as it is able to handle occlusions properly. Extensive experimental evaluations show that our SplatFlow substantially outperforms all published methods on KITTI2015 and Sintel benchmarks. Especially on Sintel benchmark, SplatFlow achieves errors of 1.12 (clean pass) and 2.07 (final pass), with surprisingly significant 19.4% and 16.2% error reductions from the previous best results submitted, respectively. Code is available at