It is important for deep reinforcement learning (DRL) algorithms to transfer their learned policies to new environments that have different visual inputs. In this paper, we introduce Prompt based Proximal Policy Optimization ($P^{3}O$), a three-stage DRL algorithm that transfers visual representations from a target to a source environment by applying prompting. The process of $P^{3}O$ consists of three stages: pre-training, prompting, and predicting. In particular, we specify a prompt-transformer for representation conversion and propose a two-step training process to train the prompt-transformer for the target environment, while the rest of the DRL pipeline remains unchanged. We implement $P^{3}O$ and evaluate it on the OpenAI CarRacing video game. The experimental results show that $P^{3}O$ outperforms the state-of-the-art visual transferring schemes. In particular, $P^{3}O$ allows the learned policies to perform well in environments with different visual inputs, which is much more effective than retraining the policies in these environments.