ICASSP2023 General Meeting Understanding and Generation Challenge (MUG) focuses on prompting a wide range of spoken language processing (SLP) research on meeting transcripts, as SLP applications are critical to improve users' efficiency in grasping important information in meetings. MUG includes five tracks, including topic segmentation, topic-level and session-level extractive summarization, topic title generation, keyphrase extraction, and action item detection. To facilitate MUG, we construct and release a large-scale meeting dataset, the AliMeeting4MUG Corpus.