Although Federated Learning (FL) enables global model training across clients without compromising their raw data, existing Federated Averaging (FedAvg)-based methods suffer from the problem of low inference performance, especially for unevenly distributed data among clients. This is mainly because i) FedAvg initializes client models with the same global models, which makes the local training hard to escape from the local search for optimal solutions; and ii) by averaging model parameters in a coarse manner, FedAvg eclipses the individual characteristics of local models. To address such issues that strongly limit the inference capability of FL, we propose a novel and effective FL paradigm named FedMR (Federated Model Recombination). Unlike conventional FedAvg-based methods, the cloud server of FedMR shuffles each layer of collected local models and recombines them to achieve new models for local training on clients. Due to the diversified initialization models for clients coupled with fine-grained model recombination, FedMR can converge to a well-generalized global model for all the clients, leading to a superior inference performance. Experimental results show that, compared with state-of-the-art FL methods, FedMR can significantly improve inference accuracy in a quicker manner without exposing client privacy.