https://github.com/HaozheLiu-ST/NICOChallenge-OOD-Classification.
Convolutional neural networks (CNN) have demonstrated remarkable performance when the training and testing data are from the same distribution. However, such trained CNN models often largely degrade on testing data which is unseen and Out-Of-the-Distribution (OOD). To address this issue, we propose a novel "Decoupled-Mixup" method to train CNN models for OOD visual recognition. Different from previous work combining pairs of images homogeneously, our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions of image pairs to train CNN models. Since the observation is that noise-prone regions such as textural and clutter backgrounds are adverse to the generalization ability of CNN models during training, we enhance features from discriminative regions and suppress noise-prone ones when combining an image pair. To further improve the generalization ability of trained models, we propose to disentangle discriminative and noise-prone regions in frequency-based and context-based fashions. Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts, where our method achieves 85.76\% top-1 accuracy in Track-1 and 79.92\% in Track-2 in the NICO Challenge. The source code is available at