https://github.com/litwellchi/ChatIllusion.
As the capabilities of Large-Language Models (LLMs) become widely recognized, there is an increasing demand for human-machine chat applications. Human interaction with text often inherently invokes mental imagery, an aspect that existing LLM-based chatbots like GPT-4 do not currently emulate, as they are confined to generating text-only content. To bridge this gap, we introduce ChatIllusion, an advanced Generative multimodal large language model (MLLM) that combines the capabilities of LLM with not only visual comprehension but also creativity. Specifically, ChatIllusion integrates Stable Diffusion XL and Llama, which have been fine-tuned on modest image-caption data, to facilitate multiple rounds of illustrated chats. The central component of ChatIllusion is the "GenAdapter," an efficient approach that equips the multimodal language model with capabilities for visual representation, without necessitating modifications to the foundational model. Extensive experiments validate the efficacy of our approach, showcasing its ability to produce diverse and superior-quality image outputs Simultaneously, it preserves semantic consistency and control over the dialogue, significantly enhancing the overall user's quality of experience (QoE). The code is available at