Existing hybrid retrievers which integrate sparse and dense retrievers, are indexing-heavy, limiting their applicability in real-world on-devices settings. We ask the question "Is it possible to reduce the indexing memory of hybrid retrievers without sacrificing performance?" Driven by this question, we leverage an indexing-efficient dense retriever (i.e. DrBoost) to obtain a light hybrid retriever. Moreover, to further reduce the memory, we introduce a lighter dense retriever (LITE) which is jointly trained on contrastive learning and knowledge distillation from DrBoost. Compared to previous heavy hybrid retrievers, our Hybrid-LITE retriever saves 13 memory while maintaining 98.0 performance. In addition, we study the generalization of light hybrid retrievers along two dimensions, out-of-domain (OOD) generalization and robustness against adversarial attacks. We evaluate models on two existing OOD benchmarks and create six adversarial attack sets for robustness evaluation. Experiments show that our light hybrid retrievers achieve better robustness performance than both sparse and dense retrievers. Nevertheless there is a large room to improve the robustness of retrievers, and our datasets can aid future research.