Abstract:Lossless compression has made significant advancements in Genomics Data (GD) storage, sharing and management. Current learning-based methods are non-evolvable with problems of low-level compression modeling, limited adaptability, and user-unfriendly interface. To this end, we propose AgentGC, the first evolutionary Agent-based GD Compressor, consisting of 3 layers with multi-agent named Leader and Worker. Specifically, the 1) User layer provides a user-friendly interface via Leader combined with LLM; 2) Cognitive layer, driven by the Leader, integrates LLM to consider joint optimization of algorithm-dataset-system, addressing the issues of low-level modeling and limited adaptability; and 3) Compression layer, headed by Worker, performs compression & decompression via a automated multi-knowledge learning-based compression framework. On top of AgentGC, we design 3 modes to support diverse scenarios: CP for compression-ratio priority, TP for throughput priority, and BM for balanced mode. Compared with 14 baselines on 9 datasets, the average compression ratios gains are 16.66%, 16.11%, and 16.33%, the throughput gains are 4.73x, 9.23x, and 9.15x, respectively.
Abstract:Identifying anomalies from time series data plays an important role in various fields such as infrastructure security, intelligent operation and maintenance, and space exploration. Current research focuses on detecting the anomalies after they occur, which can lead to significant financial/reputation loss or infrastructure damage. In this work we instead study a more practical yet very challenging problem, time series anomaly prediction, aiming at providing early warnings for abnormal events before their occurrence. To tackle this problem, we introduce a novel principled approach, namely future context modeling (FCM). Its key insight is that the future abnormal events in a target window can be accurately predicted if their preceding observation window exhibits any subtle difference to normal data. To effectively capture such differences, FCM first leverages long-term forecasting models to generate a discriminative future context based on the observation data, aiming to amplify those subtle but unusual difference. It then models a normality correlation of the observation data with the forecasting future context to complement the normality modeling of the observation data in foreseeing possible abnormality in the target window. A joint variate-time attention learning is also introduced in FCM to leverage both temporal signals and features of the time series data for more discriminative normality modeling in the aforementioned two views. Comprehensive experiments on five datasets demonstrate that FCM gains good recall rate (70\%+) on multiple datasets and significantly outperforms all baselines in F1 score. Code is available at https://github.com/mala-lab/FCM.