Abstract:Modern training strategies of deep neural networks (NNs) tend to induce a heavy-tailed (HT) spectra of layer weights. Extensive efforts to study this phenomenon have found that NNs with HT weight spectra tend to generalize well. A prevailing notion for the occurrence of such HT spectra attributes gradient noise during training as a key contributing factor. Our work shows that gradient noise is unnecessary for generating HT weight spectra: two-layer NNs trained with full-batch Gradient Descent/Adam can exhibit HT spectra in their weights after finite training steps. To this end, we first identify the scale of the learning rate at which one step of full-batch Adam can lead to feature learning in the shallow NN, particularly when learning a single index teacher model. Next, we show that multiple optimizer steps with such (sufficiently) large learning rates can transition the bulk of the weight's spectra into an HT distribution. To understand this behavior, we present a novel perspective based on the singular vectors of the weight matrices and optimizer updates. We show that the HT weight spectrum originates from the `spike', which is generated from feature learning and interacts with the main bulk to generate an HT spectrum. Finally, we analyze the correlations between the HT weight spectra and generalization after multiple optimizer updates with varying learning rates.
Abstract:To better care for the elderly and disabled, it is essential for service robots to have an effective fusion method of object detection and grasp estimation. However, limited research has been observed on the combination of object detection and grasp estimation. To overcome this technical difficulty, a novel integrated method of detection-grasping for specific object based on the box coordinate matching is proposed in this paper. Firstly, the SOLOv2 instance segmentation model is improved by adding channel attention module (CAM) and spatial attention module (SAM). Then, the atrous spatial pyramid pooling (ASPP) and CAM are added to the generative residual convolutional neural network (GR-CNN) model to optimize grasp estimation. Furthermore, a detection-grasping integrated algorithm based on box coordinate matching (DG-BCM) is proposed to obtain the fusion model of object detection and grasp estimation. For verification, experiments on object detection and grasp estimation are conducted separately to verify the superiority of improved models. Additionally, grasping tasks for several specific objects are implemented on a simulation platform, demonstrating the feasibility and effectiveness of DG-BCM algorithm proposed in this paper.
Abstract:Direct multi-task twin support vector machine (DMTSVM) explores the shared information between multiple correlated tasks, then it produces better generalization performance. However, it contains matrix inversion operation when solving the dual problems, so it costs much running time. Moreover, kernel trick cannot be directly utilized in the nonlinear case. To effectively avoid above problems, a novel multi-task nonparallel support vector machine (MTNPSVM) including linear and nonlinear cases is proposed in this paper. By introducing epsilon-insensitive loss instead of square loss in DMTSVM, MTNPSVM effectively avoids matrix inversion operation and takes full advantage of the kernel trick. Theoretical implication of the model is further discussed. To further improve the computational efficiency, the alternating direction method of multipliers (ADMM) is employed when solving the dual problem. The computational complexity and convergence of the algorithm are provided. In addition, the property and sensitivity of the parameter in model are further explored. The experimental results on fifteen benchmark datasets and twelve image datasets demonstrate the validity of MTNPSVM in comparison with the state-of-the-art algorithms. Finally, it is applied to real Chinese Wine dataset, and also verifies its effectiveness.
Abstract:The probabilistic linguistic term has been proposed to deal with probability distributions in provided linguistic evaluations. However, because it has some fundamental defects, it is often difficult for decision-makers to get reasonable information of linguistic evaluations for group decision making. In addition, weight information plays a significant role in dynamic information fusion and decision making process. However, there are few research methods to determine the dynamic attribute weight with time. In this paper, I propose the concept of double fuzzy probability interval linguistic term set (DFPILTS). Firstly, fuzzy semantic integration, DFPILTS definition, its preference relationship, some basic algorithms and aggregation operators are defined. Then, a fuzzy linguistic Markov matrix with its network is developed. Then, a weight determination method based on distance measure and information entropy to reducing the inconsistency of DFPILPR and obtain collective priority vector based on group consensus is developed. Finally, an aggregation-based approach is developed, and an optimal investment case from a financial risk is used to illustrate the application of DFPILTS and decision method in multi-criteria decision making.