Abstract:Accurately predicting heart activity and other biological signals is crucial for diagnosis and monitoring. Given that speech is an outcome of multiple physiological systems, a significant body of work studied the acoustic correlates of heart activity. Recently, self-supervised models have excelled in speech-related tasks compared to traditional acoustic methods. However, the robustness of data-driven representations in predicting heart activity remained unexplored. In this study, we demonstrate that self-supervised speech models outperform acoustic features in predicting heart activity parameters. We also emphasize the impact of individual variability on model generalizability. These findings underscore the value of data-driven representations in such tasks and the need for more speech-based physiological data to mitigate speaker-related challenges.
Abstract:The High-Quality Wide Multi-Channel Attack database (HQ-WMCA) database extends the previous Wide Multi-Channel Attack database(WMCA), with more channels including color, depth, thermal, infrared (spectra), and short-wave infrared (spectra), and also a wide variety of attacks.
Abstract:This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as input. Conducted experiments show superior performance over similar models acting on either color images or on a combination of different modalities (visible, NIR, thermal and depth), as well as on a SVM-based classifier acting on SWIR image differences. Experiments have been carried on a new public and freely available database, containing a wide variety of attacks. Video sequences have been recorded thanks to several sensors resulting in 14 different streams in the visible, NIR, SWIR and thermal spectra, as well as depth data. The best proposed approach is able to almost perfectly detect all impersonation attacks while ensuring low bonafide classification errors. On the other hand, obtained results show that obfuscation attacks are more difficult to detect. We hope that the proposed database will foster research on this challenging problem. Finally, all the code and instructions to reproduce presented experiments is made available to the research community.
Abstract:Face recognition is a mainstream biometric authentication method. However, vulnerability to presentation attacks (a.k.a spoofing) limits its usability in unsupervised applications. Even though there are many methods available for tackling presentation attacks (PA), most of them fail to detect sophisticated attacks such as silicone masks. As the quality of presentation attack instruments improves over time, achieving reliable PA detection with visual spectra alone remains very challenging. We argue that analysis in multiple channels might help to address this issue. In this context, we propose a multi-channel Convolutional Neural Network based approach for presentation attack detection (PAD). We also introduce the new Wide Multi-Channel presentation Attack (WMCA) database for face PAD which contains a wide variety of 2D and 3D presentation attacks for both impersonation and obfuscation attacks. Data from different channels such as color, depth, near-infrared and thermal are available to advance the research in face PAD. The proposed method was compared with feature-based approaches and found to outperform the baselines achieving an ACER of 0.3% on the introduced dataset. The database and the software to reproduce the results are made available publicly.