Abstract:The vulnerability against presentation attacks is a crucial problem undermining the wide-deployment of face recognition systems. Though presentation attack detection (PAD) systems try to address this problem, the lack of generalization and robustness continues to be a major concern. Several works have shown that using multi-channel PAD systems could alleviate this vulnerability and result in more robust systems. However, there is a wide selection of channels available for a PAD system such as RGB, Near Infrared, Shortwave Infrared, Depth, and Thermal sensors. Having a lot of sensors increases the cost of the system, and therefore an understanding of the performance of different sensors against a wide variety of attacks is necessary while selecting the modalities. In this work, we perform a comprehensive study to understand the effectiveness of various imaging modalities for PAD. The studies are performed on a multi-channel PAD dataset, collected with 14 different sensing modalities considering a wide range of 2D, 3D, and partial attacks. We used the multi-channel convolutional network-based architecture, which uses pixel-wise binary supervision. The model has been evaluated with different combinations of channels, and different image qualities on a variety of challenging known and unknown attack protocols. The results reveal interesting trends and can act as pointers for sensor selection for safety-critical presentation attack detection systems. The source codes and protocols to reproduce the results are made available publicly making it possible to extend this work to other architectures.
Abstract:The High-Quality Wide Multi-Channel Attack database (HQ-WMCA) database extends the previous Wide Multi-Channel Attack database(WMCA), with more channels including color, depth, thermal, infrared (spectra), and short-wave infrared (spectra), and also a wide variety of attacks.
Abstract:This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as input. Conducted experiments show superior performance over similar models acting on either color images or on a combination of different modalities (visible, NIR, thermal and depth), as well as on a SVM-based classifier acting on SWIR image differences. Experiments have been carried on a new public and freely available database, containing a wide variety of attacks. Video sequences have been recorded thanks to several sensors resulting in 14 different streams in the visible, NIR, SWIR and thermal spectra, as well as depth data. The best proposed approach is able to almost perfectly detect all impersonation attacks while ensuring low bonafide classification errors. On the other hand, obtained results show that obfuscation attacks are more difficult to detect. We hope that the proposed database will foster research on this challenging problem. Finally, all the code and instructions to reproduce presented experiments is made available to the research community.