Abstract:Recently, while text-driven human motion generation has received massive research attention, most existing text-driven motion generators are generally only designed to generate motion sequences in a blank background. While this is the case, in practice, human beings naturally perform their motions in 3D scenes, rather than in a blank background. Considering this, we here aim to perform scene-aware text-drive motion generation instead. Yet, intuitively training a separate scene-aware motion generator in a supervised way can require a large amount of motion samples to be troublesomely collected and annotated in a large scale of different 3D scenes. To handle this task rather in a relatively convenient manner, in this paper, we propose a novel GPT-connect framework. In GPT-connect, we enable scene-aware motion sequences to be generated directly utilizing the existing blank-background human motion generator, via leveraging ChatGPT to connect the existing motion generator with the 3D scene in a totally training-free manner. Extensive experiments demonstrate the efficacy and generalizability of our proposed framework.
Abstract:The rapid progress of Large Models (LMs) has recently revolutionized various fields of deep learning with remarkable grades, ranging from Natural Language Processing (NLP) to Computer Vision (CV). However, LMs are increasingly challenged and criticized by academia and industry due to their powerful performance but untrustworthy behavior, which urgently needs to be alleviated by reliable methods. Despite the abundance of literature on trustworthy LMs in NLP, a systematic survey specifically delving into the trustworthiness of LMs in CV remains absent. In order to mitigate this gap, we summarize four relevant concerns that obstruct the trustworthy usage in vision of LMs in this survey, including 1) human misuse, 2) vulnerability, 3) inherent issue and 4) interpretability. By highlighting corresponding challenge, countermeasures, and discussion in each topic, we hope this survey will facilitate readers' understanding of this field, promote alignment of LMs with human expectations and enable trustworthy LMs to serve as welfare rather than disaster for human society.