Abstract:Occlusion is a prevalent and easily realizable semantic perturbation to deep neural networks (DNNs). It can fool a DNN into misclassifying an input image by occluding some segments, possibly resulting in severe errors. Therefore, DNNs planted in safety-critical systems should be verified to be robust against occlusions prior to deployment. However, most existing robustness verification approaches for DNNs are focused on non-semantic perturbations and are not suited to the occlusion case. In this paper, we propose the first efficient, SMT-based approach for formally verifying the occlusion robustness of DNNs. We formulate the occlusion robustness verification problem and prove it is NP-complete. Then, we devise a novel approach for encoding occlusions as a part of neural networks and introduce two acceleration techniques so that the extended neural networks can be efficiently verified using off-the-shelf, SMT-based neural network verification tools. We implement our approach in a prototype called OccRob and extensively evaluate its performance on benchmark datasets with various occlusion variants. The experimental results demonstrate our approach's effectiveness and efficiency in verifying DNNs' robustness against various occlusions, and its ability to generate counterexamples when these DNNs are not robust.
Abstract:This paper describes our experiments with automatically identifying native accents from speech samples of non-native English speakers using low level audio features, and n-gram features from manual transcriptions. Using a publicly available non-native speech corpus and simple audio feature representations that do not perform word/phoneme recognition, we show that it is possible to achieve close to 90% classification accuracy for this task. While character n-grams perform similar to speech features, we show that speech features are not affected by prompt variation, whereas ngrams are. Since the approach followed can be easily adapted to any language provided we have enough training data, we believe these results will provide useful insights for the development of accent recognition systems and for the study of accents in the context of language learning.