Abstract:We propose VL-DUN, a principled framework for joint All-in-One Medical Image Restoration and Segmentation (AiOMIRS) that bridges the gap between low-level signal recovery and high-level semantic understanding. While standard pipelines treat these tasks in isolation, our core insight is that they are fundamentally synergistic: restoration provides clean anatomical structures to improve segmentation, while semantic priors regularize the restoration process. VL-DUN resolves the sub-optimality of sequential processing through two primary innovations. (1) We formulate AiOMIRS as a unified optimization problem, deriving an interpretable joint unfolding mechanism where restoration and segmentation are mathematically coupled for mutual refinement. (2) We introduce a frequency-aware Mamba mechanism to capture long-range dependencies for global segmentation while preserving the high-frequency textures necessary for restoration. This allows for efficient global context modeling with linear complexity, effectively mitigating the spectral bias of standard architectures. As a pioneering work in the AiOMIRS task, VL-DUN establishes a new state-of-the-art across multi-modal benchmarks, improving PSNR by 0.92 dB and the Dice coefficient by 9.76\%. Our results demonstrate that joint collaborative learning offers a superior, more robust solution for complex clinical workflows compared to isolated task processing. The codes are provided in https://github.com/cipi666/VLDUN.




Abstract:Background: Colonoscopy, a crucial diagnostic tool in gastroenterology, depends heavily on superior bowel preparation. ChatGPT, a large language model with emergent intelligence which also exhibits potential in medical applications. This study aims to assess the accuracy and consistency of ChatGPT in using the Boston Bowel Preparation Scale (BBPS) for colonoscopy assessment. Methods: We retrospectively collected 233 colonoscopy images from 2020 to 2023. These images were evaluated using the BBPS by 3 senior endoscopists and 3 novice endoscopists. Additionally, ChatGPT also assessed these images, having been divided into three groups and undergone specific Fine-tuning. Consistency was evaluated through two rounds of testing. Results: In the initial round, ChatGPT's accuracy varied between 48.93% and 62.66%, trailing the endoscopists' accuracy of 76.68% to 77.83%. Kappa values for ChatGPT was between 0.52 and 0.53, compared to 0.75 to 0.87 for the endoscopists. Conclusion: While ChatGPT shows promise in bowel preparation scoring, it currently does not match the accuracy and consistency of experienced endoscopists. Future research should focus on in-depth Fine-tuning.




Abstract:Recent advancements in Large Language Models (LLMs) have been reshaping Natural Language Processing (NLP) task in several domains. Their use in the field of Human Resources (HR) has still room for expansions and could be beneficial for several time consuming tasks. Examples such as time-off submissions, medical claims filing, and access requests are noteworthy, but they are by no means the sole instances. However, the aforementioned developments must grapple with the pivotal challenge of constructing a high-quality training dataset. On one hand, most conversation datasets are solving problems for customers not employees. On the other hand, gathering conversations with HR could raise privacy concerns. To solve it, we introduce HR-Multiwoz, a fully-labeled dataset of 550 conversations spanning 10 HR domains to evaluate LLM Agent. Our work has the following contributions: (1) It is the first labeled open-sourced conversation dataset in the HR domain for NLP research. (2) It provides a detailed recipe for the data generation procedure along with data analysis and human evaluations. The data generation pipeline is transferable and can be easily adapted for labeled conversation data generation in other domains. (3) The proposed data-collection pipeline is mostly based on LLMs with minimal human involvement for annotation, which is time and cost-efficient.