Abstract:Unmanned aerial vehicles (UAVs) have played an increasingly important role in military operations and social life. Among all application scenarios, multi-target tracking tasks accomplished by UAV swarms have received extensive attention. However, when UAVs use radar to track targets, the tracking performance can be severely compromised by jammers. To track targets in the presence of jammers, UAVs can use passive radar to position the jammer. This paper proposes a system where a UAV swarm selects the radar's active or passive work mode to track multiple differently located and potentially jammer-carrying targets. After presenting the optimization problem and proving its solving difficulty, we use a multi-agent reinforcement learning algorithm to solve this control problem. We also propose a mechanism based on simulated annealing algorithm to avoid cases where UAV actions violate constraints. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
Abstract:This paper discusses OpenAIs ChatGPT, a generative pre-trained transformer, which uses natural language processing to fulfill text-based user requests (i.e., a chatbot). The history and principles behind ChatGPT and similar models are discussed. This technology is then discussed in relation to its potential impact on academia and scholarly research and publishing. ChatGPT is seen as a potential model for the automated preparation of essays and other types of scholarly manuscripts. Potential ethical issues that could arise with the emergence of large language models like GPT-3, the underlying technology behind ChatGPT, and its usage by academics and researchers, are discussed and situated within the context of broader advancements in artificial intelligence, machine learning, and natural language processing for research and scholarly publishing.
Abstract:Identifying controversial posts on social media is a fundamental task for mining public sentiment, assessing the influence of events, and alleviating the polarized views. However, existing methods fail to 1) effectively incorporate the semantic information from content-related posts; 2) preserve the structural information for reply relationship modeling; 3) properly handle posts from topics dissimilar to those in the training set. To overcome the first two limitations, we propose Topic-Post-Comment Graph Convolutional Network (TPC-GCN), which integrates the information from the graph structure and content of topics, posts, and comments for post-level controversy detection. As to the third limitation, we extend our model to Disentangled TPC-GCN (DTPC-GCN), to disentangle topic-related and topic-unrelated features and then fuse dynamically. Extensive experiments on two real-world datasets demonstrate that our models outperform existing methods. Analysis of the results and cases proves that our models can integrate both semantic and structural information with significant generalizability.