Abstract:Large Language Models (LLMs) are discovered to suffer from accurately retrieving key information. To address this, we propose Mask-Enhanced Autoregressive Prediction (MEAP), a simple yet effective training paradigm that seamlessly integrates Masked Language Modeling (MLM) into Next-Token Prediction (NTP) to enhance the latter's in-context retrieval capabilities. Specifically, MEAP first randomly masks a small fraction of input tokens and then directly performs the standard next-token prediction autoregressive using a decoder-only Transformer. MEAP eliminates the need for bidirectional attention or encoder-decoder architectures for MLM, incurring no additional computational overhead during pre-training or inference. Intensive experiments demonstrate that MEAP substantially outperforms NTP on key information retrieval and long-context reasoning tasks, while performing on par or better on commonsense reasoning tasks. The benefits of MEAP also extend to supervised fine-tuning, where it shows remarkable advantages in lost-in-the-middle scenarios, outperforming NTP by 11.77 percentage points. Our analysis indicates that MEAP's effectiveness arises from its ability to promote more distinguishable attention scores by concentrating on a reduced set of non-masked tokens. This mechanism improves the model's focus on task-relevant signals while mitigating the influence of peripheral context. These findings position MEAP as a promising training paradigm for large language models.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of tasks by understanding input information and predicting corresponding outputs. However, the internal mechanisms by which LLMs comprehend input and make effective predictions remain poorly understood. In this paper, we explore the working mechanism of LLMs in information processing from the perspective of Information Bottleneck Theory. We propose a non-training construction strategy to define a task space and identify the following key findings: (1) LLMs compress input information into specific task spaces (e.g., sentiment space, topic space) to facilitate task understanding; (2) they then extract and utilize relevant information from the task space at critical moments to generate accurate predictions. Based on these insights, we introduce two novel approaches: an Information Compression-based Context Learning (IC-ICL) and a Task-Space-guided Fine-Tuning (TS-FT). IC-ICL enhances reasoning performance and inference efficiency by compressing retrieved example information into the task space. TS-FT employs a space-guided loss to fine-tune LLMs, encouraging the learning of more effective compression and selection mechanisms. Experiments across multiple datasets validate the effectiveness of task space construction. Additionally, IC-ICL not only improves performance but also accelerates inference speed by over 40\%, while TS-FT achieves superior results with a minimal strategy adjustment.